Topic outline

• General

SKMM3033: Finite Element Method

Synopsis
This course gives students an exposure to the theoretical basis of the finite element method and its implementation principles, and introduces the use of general purpose finite element software for solving real-life engineering problems.

• Topic 1

Introduction to Finite Element Method (FEM)

The students are expected to be able: 1. To explain the advantageous and disadvantegous of Finite Element Method (FEM) in engineering applications; 2. To define the basic types of elements used in FEM
• Topic 2

Matrix algebra and Gaussian Elimination Method

The students are expected to be able: 1. To understand matrix manipulation to solve simultaneous equations; 2. To apply Gaussian Elimination method to solve simultaneous equations
• Topic 3

One dimensional (1-D) problems

The students are expected to be able to describe shape function for a 1-D element displacement based on the natural coordinate
• Topic 4

Potential energy approach: 1-D bar stiffness matrix

The students are expected to be able to derive the stiffness matrix for a 1-D bar element using the minimum potential energy theorem
• Topic 5

Equilibrium equations using energy approach

The students are expected to be able to understand the Minimum Potential Energy theorem used to solve FEM problems

• Topic 6

Coordinate transformation: Truss stiffness matrix

The students are expected to be able to execute coordinate transformations of 1-D bar element for plane truss element
• Topic 7

Prismatic beam elements

The students are expected to be able to formulate the stiffness matrix and and load vector for a beam element