OPENCOURSEWARE @®®

SKMM 3033 Finite Element Method

Topic 3: One-dimensional (1-D) problems

DR WILLIAM CHONG WOEI FONG
Department of Aeronautics, Automotive and Ocean Engineering
Faculty of Mechanical Engineering

By the end of the notes:

The students are expected:

- To describe shape function for an element displacement based on the natural coordinate

OPENCOURSEWARE @®®

Basic concept of FEM

OPENCOURSEWARE @유유

Basic concept of FEM

Loading Condition

Point load, P

- Concentrated load acting at any point along the body/structure
- Unit in Newton (N)

Loading Condition

Traction force, T

- Distributed load acting on the surface of the body
- For a 1-D problem, it is defined in terms of force per unit length

Loading Condition

Body force, f

- Distributed force acting on every elemental volume of the body
- It has the units of force per unit volume
- E.g. self weight of the body due to gravity

OPENCOURSEWARE @ロ®®

Finite Element Modeling

Step 1:
 Element Discretisation

- Subdivide the bar into several sections
- Each section should have uniform cross-sectional area
- The non-uniform bar is then discretised into a stepped bar

OPENCOURSEWARE @ロ®®

Finite Element Modeling

Step 2:
Numbering Scheme

- A global numbering scheme is assigned
- X-direction in this case is considered the global coordinate direction
- F represents the global forces acting at the nodes
- Q represents the global displacements at the nodes

OPENCOURSEWARE @ロ®®

> Element Analysis (1-D element - 2 nodes)

OPENCOURSEWARE @ロ®®

Natural Coordinate

Consider a single element (2 nodes):

Assuming the natural/intrinsic coordinate is ξ :

$$
\xi=m x+c
$$

For a 2-node element, we assume:

$$
\begin{aligned}
& x_{1} \rightarrow \xi=-1 \\
& x_{2} \rightarrow \xi=+1
\end{aligned}
$$

OPENCOURSEWARE @உேథ

Natural Coordinate

The natural/intrinsic coordinate system can be defined as:

$$
\xi=2\left(\frac{x-x_{1}}{x_{2}-x_{1}}\right)-1
$$

Element Displacement

q_{1}-displacement at node 1
q_{2}-displacement at node 2
u -displacement of a point within the element

- The displacement field, $u(x)$ within an element is not known
- To simplify the problem, it is assumed that the displacement varies linearly from node 1 to node 2
$u=a_{1}+a_{2} x^{\prime}$

OPENCOURSEWARE @O®O

Element Displacement

q_{1}-displacement at node 1
q_{2}-displacement at node 2

$$
u=\left(1-\frac{x^{\prime}}{L}\right) q_{1}+\left(\frac{x^{\prime}}{L}\right) q_{2}
$$

u -displacement of a point within the element
$\left.\begin{array}{l}u=\left[\left(1-\frac{x^{\prime}}{L}\right) \frac{x^{\prime}}{L}\right]\binom{q_{1}}{q_{2}} \quad \text { Shape Functions } \\ \left.\therefore u=N_{1} \quad N_{2}\right) \quad q_{1} \\ q_{2}\end{array}\right) \quad$ st

(0)UTM

OPENCOURSEWARE @요유

Element Displacement

q_{1} - displacement at node 1
q_{2}-displacement at node 2
u - displacement of a point within the element

$$
\begin{aligned}
& \therefore N_{1}=1-\frac{x^{\prime}}{L}=1-\frac{(\xi+1)}{2}=\frac{(1-\xi)}{2} \\
& \therefore N_{2}=\frac{x^{\prime}}{L}=\frac{(\xi+1)}{2}
\end{aligned}
$$

To describe the Shape function in terms of Natural Coordinate:

$$
\begin{aligned}
& \xi=2\left(\frac{x-x_{1}}{x_{2}-x_{1}}\right)-1 \\
& \xi=2\left(\frac{x^{\prime}}{L}\right)-1 \\
& \therefore x^{\prime}=\frac{L(\xi+1)}{2}
\end{aligned}
$$

OPENCOURSEWARE @ロ®

Strain-Displacement Relation

Strain-Displacement Relation:

$$
\begin{aligned}
& \varepsilon=\frac{d u}{d x} \\
& \varepsilon=\frac{1}{x_{2}-x_{1}}\left(-q_{1}+q_{2}\right) \\
&=\frac{1}{l_{e}}\left(\begin{array}{ll}
-1 & 1
\end{array}\right)\binom{q_{1}}{q_{2}} \\
&\{B\}=\frac{1}{l_{e}}\left(\begin{array}{ll}
-1 & 1
\end{array}\right) \rightarrow \varepsilon=\{B\}\{q\}
\end{aligned}
$$

Applying Chain-Rule:

$$
\rightarrow \varepsilon=\frac{d u}{d \xi} \times \frac{d \xi}{d x}
$$

$$
\xi=2\left(\frac{x-x_{1}}{x_{2}-x_{1}}\right)-1 \rightarrow \frac{d \xi}{d x}=2\left(\frac{1}{x_{2}-x_{1}}\right)
$$

$$
u=\left(\frac{1-\xi}{2}\right) q_{1}+\left(\frac{\xi+1}{2}\right) q_{2} \rightarrow \frac{d u}{d \xi}=\frac{-q_{1}+q_{2}}{2}
$$

OPENCOURSEWARE @유유

Stress-Strain Relation

Stress-Strain Relation:

$$
\sigma=E \varepsilon
$$

Strain-Displacement Relation:

$$
\varepsilon=\{B\}\binom{q_{1}}{q_{2}}
$$

By the end of the notes:

All of you are expected to be able:

- To describe shape function for an element displacement based on the natural coordinate

