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Single component system !

Example: Steam Line

We know that for a single component system, the most
common thermodynamic variables are......

Tand P

By now, we know how to determine Tsat, psat
H (liquid and ideal/non-ideal gas),
V (liquid and ideal/non-ideal gas) and AHV@r,
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Ok....we also learned about

mixture beforel!ll

H=)yH, etc.

......... we will see that this equation is only valid
for ideal mixture!!!



- oowutmmy ©UIM

Consider the following systems,

A B

Both systems at the sameT, P and n but with
different compositions. Assuming an ideal mixture,

(H)AzzyiAHi (H)BzzyiBHi
Yin # Yis

SO

(H), #(H),
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So we have new thermodynamic variables
for
multicomponent system.............

Composition!!

(X1’ X2! X3) or (y11 yZJ y3)
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BUT typical chemical processes
involve
a multicomponent system
whereby we can’t assume ideal
mixture or ideal solution
behavior
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Consider mixing 1000 cm?3 methanol and 1000 cm?3
water at 25°C.

1000 cm3 MeOH + 1000 cm® H,0O

In fact,
1000 cm3 MeOH + 1000 cm?® H,0O
= 1970 cm? solution

®UIM
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Discuss with a person next to you why
the volume of the solution is less than 2000 cm3?



ocw.utm.my @UTM
Let’s determine the density

of the solution

Assume ideal 1 1
solution P=y "~ 3 XV

From above eqn, the calculated solution molar
density is 0.0396 mol/cm3

The actual molar density is 0.0410 mol/cm?3 that
could be calculated from

'""'—___ Partial Properties
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We just introduced a new thermodynamic
property for a multicomponent system......

Partial properties!!
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11.1 Fundamental Property Relation
(for variable composition mixture)

Definition of Chemical Potential ﬁ

Consider the following system,
- Open system and multicomponent

- Single phase at Tand P
- Variable composition (n,, n,, n4 etc)

So Gibbs energy (G) could be written as a function
of T, P, ny, n,, n; etc.

(nG) = g(P,T,n,n,...n)
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Apply partial differentiation and FPR (Chapter 6),

(g% (g% i(nG)%
d(nG)=$——1"" dP+$ L dT+( $——2'  dn
5'Pa, 8'Ts, 8Na,

\‘ / B(né

d(nG) = nVdP- nSdT+ 2{%} dn
i P,T,n

8(nG)] /

Let'sdefine  u. = {an = Chamical potential for peciesi in the mixture

P,T,nj
Ais equaion forms the basis for the deinition of patia propeaties.

Sq

d(nG)=nVdP-nSdT+ Y udn 11.2)
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How do we determine the phase of
a multicomponent system?

If it is two phases, how do we determine
the composition of each phase?

Before answering these, we need to establish
the concept of phase equilibria for
multicomponent system.



ocw.utm.my

11.2 The Chemical Potential and Phase Equilibria

Consider the following system,

- Closed system and multicomponent

- Two phases in equilibrium.

- Mass transfer occurs if the equilibrium is
disturbed.

Each phase (! and ") is actually an open system,
so egn 11.2 becomes,

d(nG)”

(nV)a dP — (nS)a dT + Z/,Lf‘ dn’

d(nG)’ = (nv)" dP - (nS)" dT + Y uPdn’
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Add the two equations for a VL system
(! is replaced by vand" is replaced by I).
d(nG)’ +d(nG) =(nv)'dP+(nV) dP! (ng)’dT! (ns)dT+" wdn’ +" pidn

+ /

d(nG) =(nV)dP! (nS)dT +" w'dn’ +" y'dn
For system in equilibrium,/ i i

(nv)dP! (nS)dT =(nV)dP! (nS)dT+" p'dr’ +" wdn

So, !. p'dn’ +!. pdn =0 dso dn ="dn’
L opfdn D pdny =1 () =0
TERTE T
If gpply to system with " phases (i.e. more than two phases)

TN T T TS =78 (L1.6)
Thisisthe criteria for phase equilibrnum for multicomponent system.
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Criteria for Phase Equilibrium for
Multicomponent System

Multiple phase at the same
T and P are in equilibrium
when the chemical potential (l;) of
each species Is the same In
all phases
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11.3 PARTIAL PROPERTIES

Based on the definition of |, , let's define a partial molar

property as follows,

_ "1 (nM)%
M, =$——" 11(7)
$ . ni &D,T,nj

WheeM ( V,U,H,S,G dc.

This is a partial property of individual species as they exist

In a solution or mixture. |

This property is different from a pure species property
primarily due to molecular interaction of different species in
the solution or mixture
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Hence, the chemical potential of species i (! .) is known also
as partial property of Gibbs energy for species |.

! = G (11.8)
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Example 11.1

This example explains the physical
and mathematical interpretation of
partial molar volume equation.
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Let’'s familiar with symbols in solution
thermodynamics,

Symbol | Type of property Example
M. Pure-specieproperties UH,S, G,
M Partial propeties UHSG
M Solution ormixture propeties UHSG
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In general, for a homogenous mixture,

nM = M(T,P,n,n,,n......)

I(nl\/l)% I(n|\/|)% I(nl\/l)%
d(nM)=$=—1 dP+s~ 1 dT+( $—~—  dn
§ P &'n § T l&D,n I§ n' l&:’Tnj
Could also be written as,
"n!/ M % "n! M % _
d(nM) =g MZ gp s M dT+( Mdn ~ @L9)
I P & I'T & i L

l.e. constant composition
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where d(nM) = ndM + Mdn

n
Als0, X = n=xn 9D, dq = xidn+ ndxI

Substitute into (11.9)

“n/ M % "n M % _
ndM + Mdn = + dP+ + dT+( M. (xdn+ndxn)
i!P & i!T & (i
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Rearrange,

* #"M& #"M&- _ - * _ -
,dM | dP | dT! ) Mdx/n+ M! ) Mx,;dn=0
N %OHP (T1X %O”T (P1X )i | I[ A )i i |{

This is equal to O if both terms in the brackets are
zeros, so for the 18t bracket,
dM = M dP b M dT +( Mdx  (11.10)
'P& IT&, o

And the 2"? bracket, -
M=) Mx

note: (11.10) similar to (11.9) forn =1
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M= xM  (11.11)

or

M=) nM. (11.12)

Eqns 11.11 and 11.12 show that the calculation of
mixture properties of constituent species from
partial properties is by a simple summabillity
relation!
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Eqgn 11.11 can be furthertexypanded to give, OUIM

M=1 xM " dM =1 xdM +l Mdx

Substitute into 11.10, ,
— — #'"M & #'"M & —
!. XidMi +!. idxi :W(T’X dP +¥(F(P’X dT +!I/Mi/d;(i

"M % "I M % _
IMA iy M7 dT = ( xdM,
P& T8 N

"I M % " IM % _
M o JM dT) ( xdM, =0 (11.13)
P&, ITE, -

Eqn 11.13 is a Gibbs/Duhem Egn that must be
satisfied for any a changes in P,T and m.in a
homogeneous phase.

This egn shows that the partial properties of species
making up a solution are dependent on one another.



Partial Properties in Binary Solutions
(two-component system: "#$%&#' (#

Here we will derive an eqn for partial property of a species
In binary mixtures as in term of solution property (express
a function of composition at constant T and P).

M = XM +X M,
dM = x dM, +M.dx + x,dM, +M_dXx,
dM=x dM_ +M dx + x,dM, -M_dx

From eqn 11.11

From egn 11.13 at constant T and P,
"IM% "IM%

ﬁ-&erP+ F-&PXdT()i xdM. =0 (11.13) xldj\Zlerszz:O
So, dM =M dx, -M,dx 3—M =M, M,
X1
Hence, we could show that,
= Mex ™ 115 M=mM x ™M (11.16)
17 +X2d_X ( . ) 2 ' 1dX1 .

1



Example 11.4 shows the application of
eqn 11.15and 11.16
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Parallel Relation Between
Egn for Constant Composition and
Partial Properties

Eqn for Constant Composition! Eqn for Partial Properties!

Similarly i/ve can write

H=U+PV Hi =U; + PV,
dG =VdP! SdT | dG; =VdP" SdT



ldeal-Gas Mixture



ocw.utm.my

Molar Volume of Ideal-Gas Mixture

Consider,

System A contain species 1 at T,P
System B contain species 2 at T,P
System C contain mixture 1 and 2 at T,P

(Vig)A B R—F-)r :Vlig
o), =5 =
). v



Partial Molar Volume of Species |

in an ldeal-Gas Mixture

Application of partial properties to
molar volume,

. RT %
—g _"1(vi)%  $ (N5 RT(In+ _ RT
- 1 — — * _ - —
ﬁ n g g In PyIn, P
B & pn |

The last equality infers an independent of composition!!!



So for Ideal-Gas Mixture

Vi(T,P) =V/9(T,P) =V (T, P)
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Partial Pressure of Species "in an

ldeal-Gas Mixture

The pressure that a species "would exert if it
alone occupied the molar volume of the mixture
PVTi9=nRT

Divide by ideal gas for mixture, PV™9=n_RT ,

i
So,# E_E_yi
B _YRT
pl _yiP_ Vig
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Partial Molar Properties of
Species "in an Ideal-Gas Mixture

Gibb’s Theorem,

A partial properties (other than partial molar volume) of a
constituent species in an ideal-gas mixture is equal to the
corresponding molar property of the species as a pure
ideal gas at the mixture temperature but at a pressure
equal to its partial pressure in the mixture.

M:Q(T,P) = M*(T,p)



ocw.utm.my @ UTM

Apply this theory to Enthalpy, Internal Energy and
Heat Capacity

HY (T,P) = H(T, p) = HY(T, P)

Hi = Hiig
Since ) “#s independent of pressure

Similarly,

Ui =U9 Cpn=CY%  Cy=C"

+"&#"and, ™ arealso
independent of pressure

So for ideal-gas mixture,
H9 == . yiHiig U == | yiUiig C::g == | inIiDg’i dac



ocw.utm.my o @UIM
Property Change of Mixing

for ideal gas mixture (A) “#/01#2+)#

VRS Mina© Miniiar = M9 H yiMiig
but M9 =4 yM
.1-
» Ivlinitial I\/Ifinal

M9 =0 forM =H,U

Note: Both initial and final conditions (T,P) are the same.

For example,
Enthdpy dhangeof mixing for ideal gas mixture,

I H'9 =0
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Property Change of Mixing
for ideal gas mixture (A37)#
VA = Vina Vinital = Ve f yi\/iig =V Viig# Yi

note: V9 =\9 =V
SO
1V =0

Note: Both initial and final conditions (T,P) are the same.
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Partial Molar Entropy of

Species "#h an ldeal-Gas Mixture

4" is dependent of pressure, ds¢ =C¥ dT—T! Rd—; 6.24)

: . | dpP
For isothermal mixing, ds?® =! RS-

Integrate from p;to P,
J o SO(T,P)! S¥(T,p) =! Rlngz-Rlny1

S°(T,p ) =S°%(T,P)! Riny

From GibbsTheorem,

S’(T.P)=S°(T,p) = S%(T,P)! Riny,
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I"H$%6" & ()*+,-%6(#.(/010,- ((
#"(02%+3(-+4(5018B"0((

Hence, for ideal-gas mixture,
SUT.P)=1 ys°(T.p)=1 y(s*(T.P)" Riny,)

Kk

SUT,P)=1 yS°RI ylny 11.26)

So entropy changeof mixing for ideal gas mixture,

#S2 =S°(T,P)" | y8°

="Rl yny,
=Rl yilni
Y
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Partial Molar Gibbs Energy of
Species "in an ldeal-Gas Mixture

By parallel relation, GY9=H9I TS
G =H ! TS
Sq
—ig —ig

G =Hi ! T(S°! RIny)=H?*! T(S°! RIny,)=G*°+RTIny
So for ideal-gas mixture,
—ig

G9e=" y. Gi

Gig —n yiGiig + RT" yi Inyi
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Property Change of Mixing
for ideal gas mixture (# G9)!

1G9 =G # yG"*

= RT# y.Iny
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In terms of variables (5&bfor Gibbs Energy,

dG"? =VdP! S —dP RTdInP for congant T)
Integrate
G°=! (T)+RTInP 11.28)

\ Integration constant at constant T

SO

' =G°+RTIny =! (T)+RTInP+RTIny
G = (T)+RTInyP 11(29)

Hence for ideal-gas mixture,

G°=1 yGi =l y" (T)+RTl yIn(yP) 11.30)
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Summary of Property Change of Mixing for Ideal-
Gas Mixture

MY, = Mina© Miniiar = M #H yiMiig
IHY =0
U9 =0
V9 =0
i [} | 1
1S =R yIn—
Y,

| G2, =RT" ylny,



Fugacity and Fugacity Coefficient:

Pure Species
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Fugacity of Pure Species

The concept of fugacity is introduced when we want to
apply an eqgn similar to 11.28 (ideal gas) to a real

fluid (liquid or gas). G9=1 (T)+RTInP

This is done by replacing 6 with a property specific to a
particular species called fugacity.

G =! (T)+RTInf 11.31)

f." fugacity of pure species i (with unt of pressure)
l.e. f Isapseudopessure.

note: foragasunde an ideal gas condtion, f =P
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Residual Gibb Energy and Fugacity Coefficient

of Pure Species

Egn (11.32! Egn(11.28§,
G !G°=RTInf! RTInP = RTInEI

G' = RTln% (11.33)

let's us defined ¢, as a fugacity coefficient for species i as follows,

avli N

, a dimensionless quantity

=
Il

So for ideal gas, ¢. 1s 1
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Determination of Fugacity
Coefficient (bl.



GR=RTIn! (11.33)
or
R |
R G—= '(Z' 1)dP
ni =i RT P
GR/ dP

Conbinewith Egn 6.49 ’Ril' =" (Z ! )—

In# =" (z | 1)d—P (11.35)
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Fugacity Coefficient of
Pure Species from Virial Egn

BP
The 2-term Virial Equation for Z;: ! 1= e

In!, = #(z" 1)%P

Subditute

PSBP' ' dP B r BP
In! = = =
hs #%RTQ p R AT Ry

/ —exp*B P;
! YRT

Note: B = Bii




Alternatively for the 2-term Virial Equation for Z;:

BP BPP _P P
Z11=—— =R L=
i RT RT.T T T

P
(B°+" BY) T
mézﬁagn%L

In# = $(BO "B)

P
dPr :(BO+" Bl)_r
T

r

(%P 0 1 (
# = exp' —(B® +" BY)*
&l )
for B’ and B', see egn 3.65 ad 3.66
B° =0.083 2222 d B'=0.139 21/2

1.6 4.2
Tr Tr
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Fugacity Coefficient of
Pure Species from Generic Cubic EOS

Combined egn 11.33 with 6.66b (and apply for species "#

G® = RTIn! (11.33)
GR

L=7Z"1"In(Z." #)" g1 6.66b
RT 1 ( l l) ql l ( )

We get,
Ing. =72 —-1-In(Z - p.)—q 1. (11.37)
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Fugacity Coefficient of
Pure Species from Generalized Correlation

Lee/Kesler correlation,

ng, = j (Z —1) d:

forP=PP dP=PdP

dP
—j (Z° + wZ" - 1)
P

r

Ing, = J(Z—>C f—J(

dP dp
In!, = #(2°" 1) = +$# 7 -

r r

In!. :In!,.°+$ln!i1



In’. =In!i°+" In!i1
I =191
1o=100Y

Values for ! ° and ! are found from Table E13-E16
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Vapor/Liquid Equilibrium for
Pure Species

From chapter 6 we know that criteria for VLE for
pure speciesis 7-$78%% or #797%:

Let’s apply eqn 11.31 for each phase. Giv = | i(T) +RTIn fiv

G =! (T)+RTInf
By difference,

\'

G'! G =RTIn-=0

fY fV
ni-=0 =1 fro=f =

f f Another phase
Also equilibrium criteria
U ol _ e forpure species!

i P sat [ i |
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Fugacity of Pure Liquid

Only for the fugacity of pure liquid at P and T. Easily calculated
by the Poynting factor equation as derived below,

~ fiI(Pisat) .I:iV(Pisat) f,I(P)

I I
= I fi (P) Psat — ,§atPsat fi (P)
fiv (Pisat) Pisat .I:i (Pisat)

fiI(Pisat) [ S [ fiI(Pisat)

f (P) P =) (A)

Also

f!
G/ ! G** =RTInf' I RTInf"** =RT I (B)

also at constant T,

dG, =V.dP and we integrate from sat liquid to compressed liquid,

P
G'l G = "v'dp (©)

sat
I:‘i
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Combine (B) and (C),

.I:I P fl 1 P
RTIn—— =1V'dP rearrange, ——=exp—— | V/dP
i Pisat fl Pisat

subs into (A),
1 P | P
.I:Il — !isatPisat eXpR_ 11 VlldP — !isatPisat eXp_I 11 dP
Pisat Pisat

@UuIM

) YIL

note :ViI IS approximately constant and is evaluated at sat liquid, therefore:

Vil (P # Pisat)

RT
v

The exponential is known as a Poynting factor

f_l — !§atPisat eXp

(11.44) fugacity of pure liquid |



Fugacity
for Species "in Solution

(P)
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Reuvisit, for an ideal gas mixture,

W =Gi =! (T)+RTIn(yP) 10.29)

Parallel to the definition of fugacity for pure species,
the introduction of fugacity for solution is done by .
replacing ; .6 in Eqn 11.29 with fugacity for species in solution (fi))

So, for a real mixture or solution,

u =G =! (T)+RTInP 11(.46)

f? fugecity of speciesi in mixture or solution.

) YIL

©UIM



| (T)+RTInP =1 (T)+RTIn
So

f? - ﬁ” Criteria of VLE for multicomponent system !
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Also, nGR =nG! nG"

#o (nGR)c(& : mz& ! ﬁjo (nGig)&

G* =G!G"
= H e
= RTInP ! RTIny,P

P
= RTIn——
y.P

=RTIn0 (11.51)

: (
0 7} n. " n. 0 " n
fO ! (P,T,nj %{0 ! (P,T,n]. é() ! (P,T,nj



o ©

where Ty

. f . . o . .

¢ = ——  fugacity coefficient* of species i in solution or mixture.
Y

0=ty p

*mostly applied to gas mixture



Calculation of Fugacity Coefficient
of Species i in Solution (_l('ij)
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Application of Fundamental

Residual-Property Relation........

|

#E$:id(n6)' nGZ
RT% RT . .’ RT
InG$ 1!

do——=_—
“RT% RT ¥

'nG$_nVdP, nS~ Gdn , nH ng”
dy—p= ' dT + — dT + dT
“RT% RT RT ( RT RT? T

G
—dT +( FTTdni (11.54)

dT

$, nH'TS)

nV)dP' (nS)dT +( Gdn dT
(<) (nS)AT + ( &%  RT?

'nG$_nvdP, nH
*RT% RT RT

for ideal gas,
'nG®$ nVv9%P , nHY
d 4 = 7
RT % RT RT

G
dT +( —tdn,  (11.54ig)
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(11.54 - 11.54ig)

! R$ R R GR
o 2V aP, nh dT +( —tdn,  (11.55)
RTS8 RT RT? RT

<>

Substitute (11.51),

! GR$ VR R N
#” Vo gpe MM gt +) In@dn,  (11.56)
RT % RT RT? s
So,
#--(nGV )&
n® = g0 /RT E (11.59)
ni
%/0 (P,T,nj
Note:

In 0 is a partial property of &%,
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Combine with egn 6.49 and 11.59 becomes,

. H#'(Z-n& dP
Inf :)% "n ( P
0 I P.T.n,

{anz - on } d_P
Jon  on P
' ' P.T.n, 1

=, J2e
on n. P
I P T n. ' P,T,nj

l

1|
O'—,-U

O‘—;-U

In g =T(Z,—1)% (11.60)
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Using Two-term Virial EOS

=1+ ﬁ nZ =n+ r:;P
7 _ d(nZ) _ 1. P | o(nB)
1 on RT| on
T dp,T.n, 1 drn,
< >

Substitute into eqn 11.60

L P | 9(nB) 1 '
ln@_i[HRT{ on, L_] T{

How to evaluate?
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For mixture,
B= ZEyiijij
i

Consider a binary system (species 1 and 2),

B=yyB,+yy,B,+Y,y,B,+V,y.B,

B = ny11 +2y.y,B

12

+¥,B,,

B = y1(1—y2)B11 +2y1y2512 +y2(1_y1)822
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Rearrange further,

B = y1B11 | y1yZB11 + 2y1yZB12 + yZBZZ | y1y2822
- y1B’I1 + yZB22 + 2y1yZB12 | y1yZB11 ! y’IyZBZZ
- y1B11 + yZBZZ + y1y2(2512 | B11 ' B

- y1B’I1 + y2822 + y1y2"12

22)

where ! =2B,"B.," B,
Multiply by n (note:y. = n./n),

n
— T2
nB = nlB11 + n2822 +n —=|

n 12
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n
— 2 /
nB = n1B11 + n2822 +n —=|

no 12
#'(nB)& ) % LU _v'ul/u'"v
Olbnn ( :B11+O+n2!12$lln . nOte ;: 2
$ 1 IT,n2 1= v
)n"n / ndn,
+ 2 : )1 n"n,
— , N — 1
_B11+n21 ..n1 -!12_B11+n2;|;ﬁl nz..n1:!12
£ :
_ )n, nn'n, /
_B11+;|;n/ nz..n1l' 12
# (nB) & :
%..n .( = B11 +(1/ y1)y2!12 - B11 + 2!12

$ T Tn
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11 1 22 2
B = RTc12 (BO + 51) Interaction parameter

P, 12 / (=0 if no data provided)

W, +®
@, = : 2 : Top = (TC1T02)1/2(1_k12)
Z,,RT,., viP v Z,+2,
P= Voo = Ly =
V 2 2

c12



So,

P
Inq)1 T(B +y26 )

similarly

n P
In¢2 = E(Bzz +y12612)
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In general, for multicomponent gas mixture,

) _io N N
In® RT 2$$yiyl(2 w7 n)§

where,

!ik = 28ik ) Bii "B and !iI - 28iI " Bii ) BII

kk
!ii:!II:O and !ik:!ki
RT . I+
_ Cij 0 1 _ j _ 12 (4 n
Bij — P (B +! ijB) ! i 2 Tcij - (Tcich) (1 kij)
Cij
Z RT. #y ' +v1’3& Z +Z.
P = Cl Cl) V = 0/6 ( Z = Cl CJ
Cij \/Cij Cij $ 2 . Cij 2



Using Generic Cubic EOS

Ino :%(z 1) In@Z" #)" g

Refer to dhagoter 14 if you interested in the ddails.

(Out of scopefor this class)



ldeal-Solution
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) Y

ig _ ~9 _ A
We know for an ideal-gas mixture, :uig =G = Gig(T’ P) + RT In yi

No intermolecular forces/interaction
and negligible particle volume (compare to molar volume).
Only for an ideal gas mixture.

For an ideal solution, we define 1 =G =G, (T,P) + RTInx,

There exist intermolecular interaction but the various molecules
have similar size, structure and intermolecular forces.
Applicable for real gas mixture and liquid solution.

However, application is most often to liquid solution.

So for an ideal solution, G =1 xG“ =1 xG, +RTl xInx
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Entropy for Ideal Solution

Subdgitute . = G into Egn 11.3

dG=VdP-SdT+ | G dx

Apply criterion of exactness,
= _ ' (n§%_ ) G,

ﬁ/xI 8anx "‘l"T—

For ideal solution,
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Enthalpy for Ideal Solution

ryid — ~id o id

HY=G +RTInx +T(S! RInx)
=G +TS
= Hi

So for idedl solution,

H=| xH,
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Molar Volume for Ideal Solution

dG=VdP-SdT+ | G.dx

Apply criterion of exactness,
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For i1deal solution,
g = /G1% _ " 1(G (T.P)+ RTHPX) %
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Excess Property (ME)

In previous discussion, the real solution is evaluated with
reference to ideal gas mixture by using the definition of
residual property. Hence the following equation is generally
and easily apply for a gas mixture.

P

0=
I y P

Real liquid solution is, however, much more convenient to
be evaluated with reference to its departure from an
ideal solution (not ideal-gas) behavior.
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Hence, we define an excess property as,

The difference between actual property of a solution and the
property of an ideal solution at the same T, P and x.

ME=M! M"
So,
M=ME+M"

forexamplee H =H® +H"

Now, let’s apply this definition to Gibb’s Energy.
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GE=G I G
nGE = nG ! nG"“

Lho)e _pl)s gl
o N (PTn o & (PT,nj o h (P,T”j
GF=G ! G"

fom11.46,G =" (T)+RTIn P

aso we know, G = G, + RT Inx
=" (T)+RTInf +RTInx



0,

GE =1 4T)+RTInP" (L¢F)+RTInf +RTInx )

GF =RTInP" RTInf " RTInx

GF = RT(In—f‘))
X f
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Activity Coefficient of Species i
in Solution
Vi

The previousequaion @uld bewritten as,

G’ =RT(Iny)).

where
2 . . -
I = —'f an activity coeficient of speciesi
x f

or
f:ij:!ixi fi

ST  For a liquid solution!



ldeal Solution
(Lewis/Randall rule)



For ideal solution,
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GF=0
SO

i

RT(In——)=RT(n/.)=0
X f |

therefore,

f'jd
= | =1

Pl=x f  LewigRenddl rule

aso dvideby Px
f?d _x f

Px Px
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Fundamental Excess-Property Relation

InG$ 1 nG
di—o=—d(nG) dT

*RT® RT (nG) RT?

InG$ 1 ! _$ n(H'TS)

o = V)P (nS)IT +( G.dn o' dT
dtrr & mr #VIIP T (0S)IT + (1 Gen g =0

! G.dn

#nG$:anP, nSdT+( dn . nH JT + nS JT

RT% RT RT 2 RT

RT RT
' nG$_ nvdP, nH 5
"RT®% RT RT

G
—dT +( ﬁolni (11.54)

for ideal solution,

'nG“$_nv“dP, nH" G"
= ' dT +( —=dn  (11.54id
irr % rr ezt RTAn )




Fundamental Excess-Property Relation

(11.54) - (11.54id)

l Eg E E GE
nG >_nvab, nH_ -, #( grdn,  (1189)

d
#RT& RT RT?

'nG"$ _nVv-dP, nHF
= -2 dT+) In(dn  (11.93
FRT & RT | RTZO ) In(dn (193

So,
RS
nl =0 — (11.96)
% G
Therefore,

In!_ is a partial property of G%T
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Consider a multicomponent system in VLE, the
fugacity of species i for each phase,

For vapor mixture oy
VX

P
X, 1,

A
f!

For liquid solution
VLE critena,

N

f=1
SO ¢y P =y

zxi f;

This 1s the VLE relation that relates the composition of
vapor phase and that of liquid phase. See Chapter 10 for
application of this relation. Chapter 12 for correlation for y.



