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Single component system !

Example: Steam Line

We know that for a single component system, the most
common thermodynamic variables are......

Tand P

By now, we know how to determine Tsat, psat
H (liquid and ideal/non-ideal gas),
V (liquid and ideal/non-ideal gas) and AHV@r,



ocw.utm.my @UI‘M
Ok....we also learned about

mixture beforel!ll

H=)yH, etc.

......... we will see that this equation is only valid
for ideal mixture!!!
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Consider the following systems,

A B

Both systems at the sameT, P and n but with
different compositions. Assuming an ideal mixture,

(H), = ZyiAHi (H)y = ZyiBHi

Yia  Vip
SO
(H), #(H),
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So we have new thermodynamic variables
for
multicomponent system.............

Composition!!

(X1’ X2! X3) or (y11 yZJ y3)
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BUT typical chemical processes
involve
a multicomponent system
whereby we can’t assume ideal
mixture or ideal solution
behavior
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Consider mixing 1000 cm?3 methanol and 1000 cm?3
water at 25°C.

1000 cm3 MeOH + 1000 cm® H,0O

In fact,
1000 cm3 MeOH + 1000 cm?® H,0O
= 1970 cm? solution

®UIM
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Discuss with a person next to you why
the volume of the solution is less than 2000 cm3?
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Let’s determine the density

of the solution

Assume ideal 1 1
solution P=7 = SV

From above eqn, the calculated solution molar
density is 0.0396 mol/cm3

The actual molar density is 0.0410 mol/cm?3 that

could be calculated from
1

1
VT I,

—, Partial Properties
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We just introduced a new thermodynamic
property for a multicomponent system......

Partial properties!!
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11.1 Fundamental Property Relation
(for variable composition mixture)

Definition of Chemical Potential ﬁ

Consider the following system,
- Open system and multicomponent

- Single phase at Tand P
- Variable composition (n,, n,, n4 etc)

So Gibbs energy (G) could be written as a function
of T, P, ny, n,, n; etc.

(nG) = g(P,T,nl,nz....nl.)
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Apply partial differentiation and FPR (Chapter 6),
\ / /
(n0)

S
d(nG)=nvdP - nSdT + 2{

5 = Chemical potential for species 1 in the mixture
n

d(ng)z{ - Ldp+[ ;T ] dT+2[

Let's define M = {

,T,nj

This equation forms the basis for the definition of partial properties.
So,

d(nG)=nVdP—nSdT + Y wdn, (11.2)
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How do we determine the phase of
a multicomponent system?

If it is two phases, how do we determine
the composition of each phase?

Before answering these, we need to establish
the concept of phase equilibria for
multicomponent system.
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11.2 The Chemical Potential and Phase Equilibria

Consider the following system,

nB

- Closed system and multicomponent

- Two phases in equilibrium.

- Mass transfer occurs if the equilibrium is
disturbed.

Each phase (a and ) is actually an open system,
so egn 11.2 becomes,

d(nG)”

(nV)a dP — (nS)a dT + Z/,Lf‘ dn’

d(nG)’ = (nv)" dP - (nS)" dT + Y uPdn’
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Add the two equations for a VL system
(ais replaced by v and § is replaced by /).
d(nG)" +d(nG) =(nV)'dP +(nV) dP—(nS) dT —(nS) dT + Y u'dn + 3 p'dn!

+ /

d(nG)=(nV)dP —(nS)dT + Z,Uivdniv + Z,ul.ldnf
For system in equilibrium,/ i i

(nV)dP—(nS)de(nV)dP—(nS)dT+z,u;dn; +Z,ufdnl.l

So, Y pdn +> uldn'=0  also dn' =-dn’

i

Spdn) =¥ pldn) =3 (1)~ pf)dn =0

i i ]

W — /=0 we=g—

If apply to system with 7 phases (1.e. more than two phases)

Ww=p=pu*=ul=.... =u”  (11.6)
This 1s the criteria for phase equilibrium for multicomponent system.
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Criteria for Phase Equilibrium for
Multicomponent System

Multiple phase at the same
T and P are in equilibrium
when the chemical potential (u;) of
each species Is the same In
all phases
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11.3 PARTIAL PROPERTIES

Based on the definition of y; , let's define a partial molar
property as follows,

i :F(M)} 17
| 3711. P.T,n |

Where M =V, U,H,S,G etc.

This is a partial property of individual species as they exist

In a solution or mixture. |

This property is different from a pure species property
primarily due to molecular interaction of different species in
the solution or mixture
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Hence, the chemical potential of species / (i) is known also
as partial property of Gibbs energy for species I.

=
]
[
Q

(11.8)
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Example 11.1

This example explains the physical
and mathematical interpretation of
partial molar volume equation.
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Let’'s familiar with symbols in solution
thermodynamics,

Symbol | Type of property Example
M. Pure-species properties UH.S G
M Partial properties UHSG
M Solution or mixture properties UHSG
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In general, for a homogenous mixture,

nM=M(T,P,n,n,n....)

2712722773

d(nM)= a(;f) dP + 8(5?4) dT+2i, pw dn,

L AT ,n = P,

Could also be written as,

nom nom _
d(nM)_[ 5 LxdpJ{ T LxdT+zi:Ml,dnl_ (11.9)

l.e. constant composition
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where d(nM) = ndM + Mdn

n
Also, x = . =Xxn S0, dn =Xxdn+ndx

Substitute into (11.9)

na’M+Mdn:{n§?f} dP+{ngy} dT+Z]\7[i(xidn+ndxinl,)
T,x P.x I
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Rearrange,

oM oM — —
dM —| — | dP—-| — | dT-) MJdx, M->» Mx |dn=0
|: [8": ]T,x (37- ]P,x Z | XI:|n+|: 2 IXI} !

i

This is equal to O if both terms in the brackets are
zeros, so for the 18t bracket,

=MV ap e[ M) i M (1110
aP T,x aT P,x i | |

And the 2" bracket, -
M=) Mx

note: (11.10) similar to (11.9) for n =1
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M=>xM  (11.11)

or

nM=> nM.  (11.12)

Eqns 11.11 and 11.12 show that the calculation of
mixture properties of constituent species from
partial properties is by a simple summabillity
relation!
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Eqgn 11.11 can be furthertexypanded to give, OUIM

M= xM. — —  dM=Y) xdM +> Mdx,

Substitute into 11.10,

S xaid +S iy =| 20| gpi| M dT+W.
i 1 1 I / / ap - &T . I / 1

[8—’\”] dP + (a—M] dT =) x.dM,
T,x 87- P,x i

oP
M ap | M dT - xdM =0 (11.13)
P ). T ), ~

Eqn 11.13 is a Gibbs/Duhem Egn that must be
satisfied for any a changes in P,T and wm.in a
homogeneous phase.

This egn shows that the partial properties of species
making up a solution are dependent on one another.



Partial Properties in Binary Solutions
(two-component system: j =1, 2)

Here we will derive an eqn for partial property of a species
In binary mixtures as in term of solution property (express
a function of composition at constant T and P).

M = x1l\7l1 +x2I\7I2
dM = xldﬂlﬂ\_lldxl + xza’M2 +]\_42dx2
dM=x1d]\_41 +]\_41dx1 + xzcz’]\_42 —]\_4zcz’x1

From eqn 11.11

From egn 11.13 at constant T and P,

(g—";’l dP+(i)—I¥]P dT-Zx,dM,:O (11.13) x dM +x,dM =0
So, dM = M.dx, -M,d, M _ 4, -,
X1
Hence, we could show that,
_ dM — dM
M, = M+x2d—x (11.15) M, = I\/I—><1O,—X1 (11.16)

1



Example 11.4 shows the application of
eqn 11.15and 11.16
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Parallel Relation Between
Egn for Constant Composition and
Partial Properties

Eqn for Constant Composition Eqn for Partial Properties

Similarly we can write

H=U~+ PV — Ei25i+P;i
dG =VdP — SdT — dG; =V.dP—-S.dT



ldeal-Gas Mixture
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Molar Volume of Ideal-Gas Mixture

Consider,

System A contain species 1 at T,P
System B contain species 2 at T,P
System C contain mixture 1 and 2 at T,P

(Vig)A - E B 1ig

P
(7)==



Partial Molar Volume of Species |

in an ldeal-Gas Mixture

Application of partial properties to
molar volume,

o RT
se [ | (n=>) RT( on RT
- ani T,P,n n

on. P

1

- AT ,P,n.
J

The last equality infers an independent of composition!!!



So for Ideal-Gas Mixture

V(T P)=V*(T.P)=V; (T,P)



Partial Pressure of Speciesiin an

ldeal-Gas Mixture

The pressure that a species i would exert if it

alone occupied the molar volume of the mixture
PV =nRT

Divide by ideal gas for mixture, PV"9=n.RT ,

P n
i i
P
So, nT l
Y.RT
p,=yP=—"



ocw.utm.my @QIM

Partial Molar Properties of
Species i in an ldeal-Gas Mixture

Gibb’s Theorem,

A partial properties (other than partial molar volume) of a
constituent species in an ideal-gas mixture is equal to the
corresponding molar property of the species as a pure
ideal gas at the mixture temperature but at a pressure
equal to its partial pressure in the mixture.

M (T.P)= M*(T.p)
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Apply this theory to Enthalpy, Internal Energy and

Heat Capacity

H, (T,P)= H*(T,p,) = H*(T,P)
—ig :
Hi =H*
Since HY is independent of pressure

Similarly,

. g S g g U9, C,9 and C,9 are also
Ul —_ U Cpi —_— C . Cvi —_— C . .
P v,i independent of pressure

So for ideal-gas mixture,
H*=>YyH* U*=)yU® (&= ZleI’;gl etc
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Property Change of Mixing

for ideal gas mixture (AH'Y and AUY9)

ig _ — Af8 g
AMmix _ Mﬁnal o Minitial =M" - EyiMi

M* :Eyz‘Miig
58

SO M
initial
AM?®2 =0 forM =H,U

Note: Both initial and final conditions (T,P) are the same.

I\/Ifinal

For example,

Enthalpy change of mixing for ideal gas mixture,
AH, =

nmix
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Property Change of Mixing
for ideal gas mixture (AV/9)

AVE =V = Vi =VE= Dy VE=VE-VEY y,
note: V¥ =V% =V

SO

AVE =0

Note: Both initial and final conditions (T,P) are the same.
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Partial Molar Entropy of

Species i in an ldeal-Gas Mixture

o AT pdP

S'9 is dependent of pressure, dsy = Cy == R— (6.24)
. . : dP
For isothermal mixing, ds’=-R—
Integrate from p;to P, | | p ]
S*(T,P)-S*(T,p,) = -RIn—=-Rln—
D Yi

SE(T,p,)=S*(T,P)—Riny,

From Gibbs Theorem,
S¢(T.P)=S*(T.p,) = S¥(T,P) - Rlny,
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Property Change of Mixing
for ideal gas mixture AS9

Hence, for ideal-gas mixture,

S*(T,P)= Y »S(T,p,)= 3., (ng (7,P)- Rlnyi)

k

S(T,P)=) yS%RY ylny, (11.26)
So entropy change of mixing for ideal gas mixture,
ASE = S*(T,P)= D, »,S"

= _RZ yny,

1
=R In—
2y

®UIM
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Partial Molar Gibbs Energy of

Species i in an ldeal-Gas Mixture

By parallel relation, G = H® — TS
Elg _lg ngg
So, ’
Ei_g — _,g _ T(Slg Rlnyl_) = Hiig _ T(Sl.ig _ Rlnyl.) — Giig n RTlnyl,

So for 1deal-gas mixture,

G*® = Zyﬁig

G* = Ziniig + RTZ y.Iny
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Property Change of Mixing
for ideal gas mixture (AG'9)

AG® =G*-) yG*®

:Rszilnyi



In terms of variables (T,P) for Gibbs Energy,

dG* =V"*dP—-S*d —dP RTdIn P (for constant T)
Integrate
G* =T (T)+RTInP (11.28)

\ Integration constant at constant T

SO
Gi =G*+RTlny =T (T)+RTInP+RTIny

l

G =T (T)+RTInyP (11.29)

Hence for 1ideal-gas mixture,

’g—ZyG =) yT(T)+RTY y In(yP) (11.30)
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Summary of Property Change of Mixing for Ideal-
Gas Mixture

ig __ _ ig ig
AM ;. = Mﬁnal o Minm'al =M _ZyiMi

AHY =0

AU =0

AVE =0
. 1
ASS =RY y,In—
Vi

AGS, = RT) y,Iny,



Fugacity and Fugacity Coefficient:

Pure Species
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Fugacity of Pure Species

The concept of fugacity is introduced when we want to
apply an eqgn similar to 11.28 (ideal gas) to a real

fluid (liquid or gas). G®=T (T)+RTInP

This is done by replacing P with a property specific to a
particular species called fugacity.

G, =T (T)+RTInf (11.31)

f, = fugacity of pure species 1 (with unit of pressure)

i.e. f. 1s a pseudopressure.

note . for a gas under an ideal gas condition, f = P
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Residual Gibb Energy and Fugacity Coefficient

of Pure Species

Eqn (11.31)— Eqn (11.28),

G, —Gl.ig =RT1nfl.—RTlnP:RT1n%
G :RTln% (11.33)

let's us defined ¢, as a fugacity coefficient for species i as follows,

, a dimensionless quantity

So for ideal gas, ¢. 1s 1
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Determination of Fugacity
Coefficient (bl.
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G" = RTIng, (11.33)
or
R Z-1
R G—:f( )dP
" RT

/

G" P
Combine with Eqn 6.49 , —/— = jP(Z. — l)d—
RT Jo0 ! P

Ing, = jOP(Zi _ 1)‘% (11.35)
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Fugacity Coefficient of
Pure Species from Virial Egn

B P
The 2-term Virial Equation for Z;: Z —1=

’ RT

Ing, = jop(z —1)d—P

Substitute,

_J[ )P ﬁTJPdP:%

oo B2
0. =P\ Rr

Note : B = Bii
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Alternatively for the 2-term Virial Equation for Z;:

BP BPP P P . P
Z —1= =p—r r=(B +a)B)—
| RT RT.T T T

7'

ng, = [ (Z, —1)—_j Z

(B°+a)B)

P
dP = (Bo+a)B1)Fr

I" r

Ing. = J-

-~ L (B +wB'
b, =exp| (B +0B)

r

for B’ and B', see eqn 3.65 and 3.66

0.422 0.172
F and B' =0.139 - T42

B’ =0.083—
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Fugacity Coefficient of
Pure Species from Generic Cubic EOS

Combined egn 11.33 with 6.66b (and apply for species i),

G'=RTIn¢ (11.33)
GR
=7 —1-In(Z - B)—q.1 6.66b
RT l n( 1 ﬁl) ql I ( )
We get,

Ing. =72 —-1-In(Z - p.)—q 1. (11.37)
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Fugacity Coefficient of
Pure Species from Generalized Correlation

Lee/Kesler correlation,

dP
In Z —1)—
6= 5
forP=PP. dP=PdP
dP

In /- Fod r— = Z° +wZ" -1
6= 05 ["(z J ( 5

(P 50 dPr P 1dPr
|n¢,_j0 (Z°-N)Fr+o 2

r r

Ing. =Ing’ +wlIn g



Ing. =Ing’ +wIn ¢

¢i = ¢,0 (¢,1 )’

Values for ¢” and ¢ are found from Table E13-E16
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Vapor/Liquid Equilibrium for
Pure Species

From chapter 6 we know that criteria for VLE for
pure species is G'=G' or G'-G'=0

Let’s apply eqn 11.31 for each phase. G =T ,(T)+RTInf’
G =T (T)+RTInf/
By difference,
fV
G}’—GI.' = RTIn#: 0
f'v f'v v / sat
nL=0  L=1 f=f=f
f f Another phase
Also equilibrium criteria
N A y . for pure species!
(pi = psat ¢i = ¢ll = q)i t P P
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Fugacity of Pure Liquid

Only for the fugacity of pure liquid at P and T. Easily calculated
by the Poynting factor equation as derived below,

fl(P) _ /( Sat) fV(Psat) f (P) ( )(¢Sat) I(P) sat — ¢§atpsat f;I(P) (A)
i V('DIsat) Psat f (Psat) f (Psat) i i f;.l(ljisat)
Also
f/
G/-G™ =RTnf~RTInf"* = RTIn_L_ (B)

1

also at constant T,

dG, = V.dP and we integrate from sat liquid to compressed liquid,

P
GI ,sat __ J ldP (C)

P sat



T R
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Combine (B) and (C),

P

P fl 1
V'dP rearrange, _=exp— | V/dP
=| Vv g =3 J

f/sat i

RTIn

lsat
f Psat

subs into (A),

fl =P expi T V'dP = ¢ P™ expi"l _P[ dP
I I I RT Plsat I I 1 RT P.Sat

note :\/,.’ is approximately constant and is evaluated at sat liquid, therefore:

/ _ psat ] ] ] .
fl = ¢>'P™ exp d (PRTP" ) (11.44) fugacity of pure liquid i

e
The exponential is known as a Poynting factor




Fugacity
for Species i in Solution

(f)



) YIL
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Reuvisit, for an ideal gas mixture,

u¢ =G, =T (T)+RTIn(y,P) (11.29)

Parallel to the definition of fugacity for pure species,
the introduction of fugacity for solution is done by i
replacing y.P in Eqn 11.29 with fugacity for species in solution (/)

So, for a real mixture or solution,

u =G =T (T)+RTInf (11.46)

Vo

/. = fugacity of species i in mixture or solution.



So
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Also, nGR = nG-nG"

I(nGR)| {8(n6)} | 2(nG")

on on, an,
n _P,T,nj 150 = _P,T,nj
Gf =G -G
= 1 —pf
= RTInf ~RTInyP
f
=RTIn——
y,P

=RTIn¢ (11.51)



. f
where = y P
¢ = —’P fugacity coefficient™ of species i in solution or mixture.
Yi
f/\ = AlyiP

*mostly applied to gas mixture



Calculation of Fugacity Coefficient
of Species i in Solution (qsi)
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Application of Fundamental
Residual-Property Relation........

LR I e
RT) RT . . RT

\ _ _
d[ 28 1= L[ ()P - (nS)dT + Y G, |- =T9) 47
RT ) RT\ / RT

\ Gdn g
J nG)_nVdP nS/dT+2 an,  nH JT+ B g7
RT) RT RT RT RT?  RT

G
dT + ZR—'Tdn, (11.54)

J E _anP_ nH
RT) RT RT?

for ideal gas,

nG®) nV9%P nH" G
d dT + —dn 11.54
( RT J RT  RT’ 2R (11.5419)
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(11.54 - 11.54ig)
R R R é/_?
g| PG| VAP PR o Pian (11.55)
RT RT  RT? RT
<>
substitute (11.51),
R R R
d| PC Y e T 4T Y ngdn  (11.56)
RT | RT T2 <
So,
 [anC Ly
ng, = RT (11.59)
an,
= _P,T,nj
Note:

Ing, is a partial property of ¢/,
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Combine with egn 6.49 and 11.59 becomes,

on. P

{a(nz - n)} dpP
P
! P.T.n;

{anZ - 8n} @
an. on P
! I"dP.T,n
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Using Two-term Virial EOS

=1+ ﬁ nZ =n+ r:;P
7 _ d(nZ) _ 1. P | o(nB)
1 on RT| on
T dp,T.n, 1 drn,
< >

Substitute into egn 11.60

. P | o(nB (I
|n¢1:j[1+RT{g;’71)} _] T{

How to evaluate?
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For mixture,
B= ZEyiijij
i

Consider a binary system (species 1 and 2),

B=yyB. +YY,B,+Y,YBy+y,¥,B,y

B = ny11 +2y.y,B

12

+¥,B,,

B = y1(1—y2)B11 +2y1y2512 +y2(1_y1)822
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Rearrange further,

B = y1B11 - y1yzB11 + 2y1y2812 +y2822 - y1y2822
= y1B11 + yszz + 2y1yzB12 - y1yzB11 - y1y2822
- y1B11 T yszz + y1y2(2812 B B11 B 822)
=Y.B +Y,By+Vy.Y,0,

where o,=2B,-B . -B,
Multiply by n (note: y. = n./ n),

n2
nB = n1B11 + n2822 +n 7 512
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n2
nB=nB +nB, +n —= 512

n
a”_1 —
J(nB) =B, +0+n,,, note: aﬂ = vou 2uav
on, | on, v 4
/n8n1—n1dn\
2 1 nodn
:B11+n2 gn 612 :B11+n2 (E_n;an ]512
\ J
n. n.non 0
o[-t oo e
{a(a’f)} =B, +(1-y,)y,0, =B, +y25,
1T dT.n
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11 1 22 2
B = RTc12 (BO + 51) Interaction parameter

P, 12 / (=0 if no data provided)

W, +®
@, = : 2 : Top = (TC1T02)1/2(1_k12)
Z,,RT,., viP v Z,+2,
P= Voo = Ly =
V 2 2

c12



So,

P
Inq)1 T(B +y26 )

similarly

n P
In¢2 = E(Bzz +y12612)
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In general, for multicomponent gas mixture,

a P
Ing, = T (Bkk T % Zzl,yiy,(%/k - 6//)]

where,

5ik = 2Bik — Bii — Bkk and 5il = 2Bi/ ~ Bii — B//
0.=0,=0 and o, =9,

RT. to

_ Cij 0 1 i J _ 1/2

B, = (B°+0,B") o= > T, =(T,T,)"(1-k,)
cij

_Z,RT, £v1.’3+v1/3 T , _Z.+Z,
cif

clf cif
I Vcij lf




Using Generic Cubic EOS

Ing = %(Z— 1)-In(Z-B)-q1

Refer to chapter 14 1f you interested 1n the details.

(Out of scope for this class)



ldeal-Solution
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[ e

i g i
We know for an ideal-gas mixture, .u,-g =G = G,-g(TaP) + RTlnyl.

No intermolecular forces/interaction
and negligible particle volume (compare to molar volume).
Only for an ideal gas mixture.

For an ideal solution, we define i’ =G =G, (T,P)+ RTInx,

There exist intermolecular interaction but the various molecules
have similar size, structure and intermolecular forces.
Applicable for real gas mixture and liquid solution.

However, application is most often to liquid solution.

So for an ideal solution, G = in(_;iid _ Exi(;i n RTZ x,Inx,
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Entropy for Ideal Solution

Substitute 1. = G, into Eqn 11.3,
dG=VdP-SdT+ ) G,dx,
Apply criterion of exactness,
_ [&(nS)} ~ _[&Gij

l ox; |, \dT J,.

For ideal solution,

S _(&c_;;'dj ~ _(&(Gl. (T,P)+ RTInx,) j
P.x P.x

" or ), oT
5 - (G, (T ,P) _(Rlnxl.é’T ) _ S —Rlnx
a ), o ).

S = in(Si —Rlnx,) = inSi — Rin Inx,
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Enthalpy for Ideal Solution

r7id ~id Cid
H'=G"+ TS,

H'=G,+RTInx, +T(S,— RInx,)
=G, +T5§,
— Hl_

So for ideal solution,

H=) x H,
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Molar Volume for Ideal Solution

dG=VdP-SdT+ Y G,dx,

Apply criterion of exactness,

)2
JP - ox, P

For i1deal solution,

il _ (9G") _ [ 9(G,(T,P)+ RThx,)
l \ JP - JP -
Vil = dG, (T ,P) } v
- aP T ,x



Non-ldeal Solution
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Excess Property (ME)

In previous discussion, the real solution is evaluated with
reference to ideal gas mixture by using the definition of
residual property. Hence the following equation is generally
and easily apply for a gas mixture.

f
y.P

0 =

Real liquid solution is, however, much more convenient to
be evaluated with reference to its departure from an
ideal solution (not ideal-gas) behavior.
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Hence, we define an excess property as,

The difference between actual property of a solution and the
property of an ideal solution at the same T, P and x.

So,
M=M"+M"

for example: H = H* + H"

Now, let’s apply this definition to Gibb’s Energy.



dAP,T,n

dAP.T,n.

o(nG“)

on.

AP, T,n

G - G*

from 11.46, G F(T)+RTlnf

also we know, G = G, + RT Inx.

=I' (T)+RT'Inf + RT Inx,



Yol

G® = TAT)+ RTIn f —(UAT)+ RTIn f + RT Inx, )

G’ =RTInf-RTInf - RTInx,

1

o

G’ = RT(In J
5/

)
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Activity Coefficient of Species i
in Solution
/i

The previous equation could be written as,

G’ =RT(Iny).

where

an activity coefficient of species i

ST  For a liquid solution!



ldeal Solution
(Lewis/Randall rule)
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For ideal solution, —
G'=0

SO

fw
i

X

i

RT(In*—)= RT(Iny,) =0

therefore,

f,-id =x, f,  Lewis/Randall rule

also divide by Px,

ﬁw_%f
Px. B Px.

1 1

N .

0 =¢
]
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Fundamental Excess-Property Relation

\
RT )" RT
\ _ _
d| 2 - L[ (vyap— (nS)dT + 3 Gan, |- M =T9) 47
RT )" RT )T T RT?
(G ) G.dn,
J nG ) nVdP nSdT+2 an,  nH 4T + nS JT

\RT) RT RT
(nG\ nVdP nH

G
d| — | = - dT + ) —Ldn, (11.54)
\RT) RT RT? RT

RT RT? RT

for ideal solution,

id id id G/d
g| G- |_nV_dP _nH ; AT+, —dn,  (11.54id)
RT RT  RT?




Fundamental Excess-Property Relation

(11.54) - (11.54id)

E E E ~
g| NG| nV_aP _ nH dT+2—dn (11.89)
RT RT  RT?

—dT+) Inydn,  (11.93)

J nG*" VEdP nH*"
RT RT  RT?

So,

_a nG*- |
( an/?T) (11.96)

- AP, T .n

Iny. =

Therefore,
Iny. is a partial property of ¢/,
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Consider a multicomponent system in VLE, the
fugacity of species i for each phase,

For vapor mixture oy
VX

P
X, 1,

A
f!

For liquid solution
VLE critena,

N

f=1
SO ¢y P =y

zxi f;

This 1s the VLE relation that relates the composition of
vapor phase and that of liquid phase. See Chapter 10 for
application of this relation. Chapter 12 for correlation for y.



