OPENCOURSEWARE

SEE 3223 Microprocessors

5: Data Processing Instructions

Muhammad Mun’im Ahmad Zabidi (munim@utm.my)

Innovative.Entrepreneurial.Global

ocw.utm.my

Data Processing Instructions

Arithmetic operations:

— ADD, SUB, MULU, MULS, EXT, NEG.
Logical

— AND, OR, EOR, NOT
Shift

— ASL, ASR, LSL, LSR, ROL, ROR, ROXL, ROXR.
Bit operations:

— BCLR, BSET, BCHG, BTST

ocw.utm.my

Encoding Integers

Unsigned Two’ s Complement
w-1 o w=2 ;
RUX) = Sx -2 B2T(X) = -x,,°2"7"+ Y x-2
i=0 \ i=0
Sign
Bit
Decimal Hex Binary
X 15740 3D 7C| 00111101 01111100
y -15740| c2 84| 11000010 10000100
Sign Bit

= For 2’ s complement, most significant bit indicates sign

0 for nonnegative

1 for negative

UIM

ocw.utm.my @QIM
Numeric Ranges

Unsigned Values (w = number of bits) Two’s Complement Values (w = number of bits)
Notation Value Binary Pattern Notation Value Binary Pattern
Unmin 0 000...0 Trin -2w-1 100...0
U ax 2v-1 111...1 T ax 2w-1-1 011...1
Decimal Hex Binary
U ax 255 FF 1111 1111
Va:/l;ezsgor T ax +127 7F 0111 1111
Thin -128 80 1000 0000
-1 -1 FF 1111 1111
0 0 00 0000 0000
Decimal Hex Binary
Values for U ax 65535 FF FF 1111 1111 1111 1111
w=16 T hax +32767 7F FF 0111 1111 1111 1111
Tin -32768 80 00 1000 0000 0000 0000
-1 -1 FF FF 1111 1111 1111 1111
0 0 00 00 0000 0000 0000 0000

ocw.utm.my @ QTM

Values for Different Word Sizes

e Observations

|TMin | = TMax +1
* Asymmetric range
UMax = 2 * TMax +1
W
8 16 32 64

UMax 255 65,535 4,294,967 ,295| 18,446,744,073,709,551,615
TMax 127 32,767 2,147 ,483,647 9,223,372,036,854,775,807
TMin | -128| -32,768| -2,147,483,648| -9,223,372,036,854,775,808

ocw.utm.my @ UTM

ADD

 Adds the contents of the source location to the contents of a
destination location and stores the result in the destination
location.

— Source: All addressing modes; however, either source or destination must be
a data register.

— Destination: All except immediate, address register direct and program
relative.

Effect on CCR Flags

Set if a carry is generated, cleared otherwise

Set if an overflow occurred, cleared otherwise

Set if the result is zero. Cleared otherwise.

Set if the result is negative. Cleared otherwise.

X|IZ[N[I<]|O

Set the same as the carry bit.

ocw.utm.my @ UTM

SUB

e Subtraction: SUB src, dest
— [dest] & [dest] - [src]

Effect on CCR Flags

Set if a carry is generated, cleared otherwise

Set if an overflow occurred, cleared otherwise

Set if the result is zero. Cleared otherwise.

Set if the result is negative. Cleared otherwise.

X[IZIN|I<|[O

Set the same as the carry bit.

~ oowutmmy ®UIM

Effect of Arithmetic Operations on

CCR

= Addition:
1, if carry out from MSB
C =4
| 0, otherwise

V =

1, if operands are of same sign and
{ their sum is of the opposite sign
| 0, otherwise

V= an-1 ¢ bn-1 ¢ Sn-1 + an-1 ¢ bn-1 ¢ Sn-1
where a_ 4, b, 4, S, 4 are the MSBs of
source destination and result, respectively

*5-8

- oowutmmy ©UTM
Effect of Arithmetic Operations on

= Subtraction: CC R

[1, if NO carry out from MSB
C=
0, otherwise

V =1 the result is of same sign as the source

l
[1, if operands are of opposite sign and
%
| 0, otherwise

V=(an1® by4)*(d1®a,,)
where a_ 4, b, 4, d._, are the MSBs of
source destination and result, respectively

*5-9

ocw.utm.my ®©UIM

Sign Extension

* Task:

— Given w-bit signed integer X

— Convert it to w+k-bit integer with same value
* Rule:

— Make k copies of sign bit:

ocw.utm.my @ UTM

I TEOLON N

Sign EXTend Instruction

* Extends the sign bit of the low-order byte or word of a data register:
— EXT.W sign extends the low order byte to 16 bits;
— EXT.L sign extends the low order word to 32 bits.

— EXT W D2 Registers
egisters D2 XXXX FFC3
D2 0000 70C3 D3 XXXX XXXX
D3 XXXX XXXX

EXT.L D2 Registers

D2 0000 70cC3
D3 XXXX XXXX

- oowutmmy ©UTM
Example: Adding Different-Sized

Numbers

*

* Calculate A=B + C - D

* Where B is a longword, C is a word and D is a byte.

*
ORG $1000 Program origin

START MOVE.L B,DO Get B to T (running sum)
MOVE.W C,D1 Get C
EXT.L D1 Convert C to longword
ADD.L D1,DO Add C to T
MOVE.B D,D2 Get D
EXT.W D2 Convert D to word
EXT.L D2 Then convert D to long
SUB.L D2,D0 Subtract D from T
MOVE.L DO,A Store T in A
STOP #$2700 Halt processor at end of program
ORG $1000

A DS.L 1

B DC.L 40

C DC.W -16

D DC.B 3
END START

e5-12

MULU, MULS Instructions

ocw.utm.my

©

UTM

I FIOLON A

MULU performs unsigned multiplication and MULS performs signed
multiplication on two's complement numbers.

— Multiplication is a 16-bit operation that multiplies the low-order 16-bit word
in Dn (destination data register) by the 16-bit word at the effective address.

The 32-bit results is stored in the full destination data register Dn.

— Source: All modes except address register direct.
— Destination: Data register.

Effect on CCR

Always cleared.

Always cleared.

Set if the result is zero. Cleared otherwise.

Set if the result is negative. Cleared otherwise.

XIZ([N|I<|O

Not affected.

ocw.utm.my

MULU, MULS Example

Multiply unsigned:

31 16 15
DO Don’t care 1010101010101010
31 16 15
DO |0000000000101010 1010101010000000
Multiply signed:
31 16 15
DO Don’t care 1010101010101010
31 16 15
DO 11111111111101010 1010101010000000

<+«— Sign -_—
extension

@®UTM

I TEOLON

Before

After

Before

After

ocw.utm.my @ UTM

DIVU, DIVS Instructions

DIVU performs unsigned division, and DIVS performs signed division on two's
complement numbers.

— The 32-bit long word in the data register is divided by the 16-bit word at the effective
address.

— The 16-bit quotient is stored in the lower-order word of the register and the
remainder is stored in the upper-order word.

— Source: All modes except address register direct.
— Destination: Data register.

Overflow m
: . el] . e e l
Trap may o d \AWaeys%%aLrgdl.U IS attempted
Vv Set if division overflow occurred, cleared otherwise. Undefined if
divide by zero occurs.
Z Set if the quotient is zero. Cleared otherwise. Undefined if overflow
or divide by zero occurs
N Set if the quotient is negative. Cleared otherwise. Undefined if
overflow or divide by zero occurs
X Not affected.

Divide unsigned:

ocw.utm.my

DIVU, DIVS Example

DO = 98309 divide by 64
31 16 15
DO [0000000000000001 |1000000000001001
31 16 15
DO [0000000000001001 [0000011000000000
Remainder = 5 Quotient = 1536
Divide signed: DO =- 98309 divide by 64
31 16 15
DO 17111111111110110 0111111111110111
31 16 15
DO |1111111111110111 1111101000000000

Remainder = -5

Quotient = - 1536

®©UTM

T TENON AT

Before

After

Before

After

EXT before DIVS

EXT Is often used with DIVS, because DIVS requires a 32-bit
dividend.

EXT.L D1 sign-extends the low-order word in D1 to 32 bits by
copying D1(15) to bits D1(16:31).

MOVE.W (AO) ,DO ; load 16-bit dividend from memory
EXT.L DO ; extend to 32 bits
DIVS #42,D0 ; perform the division

MOVE.W DO,2(A0) ; store the quotient

e5-17

ocw.utm.my @ QTM

Negate Instruction

e Negation: negative value or 2’ s complement

 oowutmmy ®UTM
SWAP instruction

 SWAP instruction exchanges the top word with the lower
word of a data register

e Useful to get the remainder of a division operation.

*

* This snippet checks the an unsigned number

* 1is divisible by 3

*
CLR.L DO ; clear top half of DO
MOVE.W (AO) ,DO ; load 16-bit dividend from memory
DIVU #3,DO ; perform the division
SWAP DO ; bring the remainder to low word
CMP.W #0,DO ; 1if 0, number was divisible by 3
BEQ YES ; go to someplace ..

¢5-19

ocw.utm.my

EXG Iinstruction

* EXG instruction exchanges a register with another

DO

DO

register
89ABCDEF D1
11223344 D1

11223344

89ABCDEF

Before

After

I FIOLON A

ocw.utm.my @ UTM

Logic Instructions

* Logicinstructions include:

— AND Bit-wise AND

— OR Bit-wise OR

— EOR Bit-wise Exclusive OR

— NOT 1’ s Complement of bits of destination
0 0 0 0 0 1 1
0 1 0 1 1 1 0
1 0 0 1 1 0 1
1 1 1 1 0 0 0

Always cleared.

Always cleared.

Set if the result is zero. Cleared otherwise.

Set if the most significant bit of the result is set; cleared otherwise.
Not affected.

X|IZ([N|I<|O

ocw.utm.my @ UTM

I TEOLON N

Masking

Mask: bit pattern to isolate and manipulate some particular bits

* To set bits, use OR with 1sin the To clear bits, use AND with Os in the
positions of bits to be set. positions of bits to be cleared.

— Example: Set bits 1, 6, and 7 in DO: — Example: Clear bits 2 and 5 in DO:

ocw.utm.my @ UTM

I TELON AT

Inverting Bits

To invert only some bits, use Toinvert all bits, use NOT.
EOR with 1s in the positions of — Examples: Inverts all bits in DO
bits to be inverted.

— Example: Invert bits 0 and 1 in
DO:

ocw.utm.my @ QTM

Practical Application of Logical Ops

Example: A subroutine GetChar inputs an ASCll-encoded character
from the keyboard, returns in D1 a 7-bit code plus a parity bit in the
MSB. The following sequence will get the character and change the
received character to lower-case

Note:
‘A’ =01000001
‘a’ =01100001
How about lower-to-upper?
What if the data is not in A-Z range?

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100

1101
1110
1111

ocw.utm.my

ASCII Table

000 001 010 011 100 110 111
NUL DLC SP 0 @ P . p
SOH DC1 ! 1 A Q a q
STX DC2 " 2 B R b r
ETX DC3 # 3 C S C S
EOT DC4 § 4 D T d t
ENQ NAK % S E U e u
ACK SYN & 6 F \% f \%
BEL ETB ' 7 G \%% o w
BS CAN (8 H X h X
HT EM) 9 | Y i y
LF SUB = : J Z J Z
VT ESC + : K | k {
FF FS , < L \ 1 |
CR GS - = M] m }
SO RS . > N A n ~
SI US / ? O 0 DEL

- oowutmmy
Shift Operations

ASL

ASR

Operand +—

»MSB|Operand .{

LSL

Operand «—

—— Operand —

LSR

*5-26

ocw.utm.my @ HTM

ASR (Arithmetic Shift Left) Instruction

* The arithmetic shift left operation ASL
moves the bits of the operand
— Immediate: in the range 1to 8
— Register: by the value in a source data
register modulo 64
* As each bit is shifted left, it is stored in the
Carry flag of the CCR.

* The vacant spot on the right is filled with a
zZero.

ocw.utm.my @ QTM

Why is ASL useful?

e How to multiply DO by 4 ?

e ASL is the fastest way to perform “multiply by 2’ s power”

e What does ASL #n, dest do?
— [dest] €= [dest] x 2"

ocw.utm.my @ HTM

ASR (Arithmetic Shift Right)
Instruction

* Same as ASL, but * How to divide DO by 4 ?

— bits shifted to RIGHT

— MSB is duplicated back into MSB (Why?)
 ASR.B #1,D0 is equivalent to dividing DO by\l\

ocw.utm.my @ UTM

I FIOLON A

Logical Shift Instructions

* Two variants:
— LSL (Logical Shift Left)
— LSR (Logical Shift Right)
 Shifts the operand the specified number of positions left/right;
— Immediate: in therange 1to 8
— Register: by the value in a source data register modulo 64

* Vacated bit positions are always zero-filled

C Set according to the last bit shifted out of the operand. Cleared for a
shift count of zero.

Always cleared.

Set if the result is zero. Cleared otherwise.

Set if the result is negative; cleared otherwise.

X|[Z2IN|[I<

Set according to the last bit shifted out of the operand. Unaffected
for a shift count of zero.

Rotate Operations

ROL

Operand <—

O

A

ROXL

A

Operand «—

X

A

A 4

A 4

©UIM
ROR
I_» — Operand o C
ROXR
—| X — — Operand » C

A

¢5-31

Two variants:

— ROL(Rotate Left)

ocw.utm.my @ UTM

I FIOLON A

Rotate Instructions

— ROR(Rotate Right)

Shifts or rotate the operand the specified number of positions left/right. Bits
that move off one end are put back on the opposite end after setting or clearing

the C-bit.

Rotates the operand the specified number of positions left/right;
— Immediate: in the range 1to 8

— Register] by the value in a source data regis.er modulo 64

C

Set according to the last bit rotated out of the operand.
Cleared when the rotate count is zero.

Always cleared.

Set if the result is zero. Cleared otherwise.

Set if the most significant bit is set; cleared otherwise.

X|Z|IN|[<Z

Not affected

I FIOLON A

ocw.utm.my @ UTM

Rotate with eXtend Instructions

Two variants:
— ROXL(Rotate Left with eXtend)
— ROXR(Rotate Right with eXtend)
Rotates the operand the specified number of positions left/right including the X-
bit.
Rotates the operand the specified number of positions left/right;
— Immediate: in therange 1 to 8
— Register: he value in r register m lo 64

C Set according to the last bit rotated out of the operand. When the
rotate count is zero, set to the value of the extend bit.

Always cleared.

Set if the result is zero. Cleared otherwise.

Set if the most significant bit is set; cleared otherwise.

X|[ZIN|[I<Z

Set according to the last bit rotated out of the operand. Unaffected
for a rotate count of zero.

ocw.utm.my @ UTM

1 RN AT

Example: Setting Parity Bit of A Byte

The following program sets the parity bit (msb) of a byte depending on the

number of 1" s in the byte using rotate.

* |f number of ones is odd parity bit is set(= 1), otherwise =0 One Byte
* DO contains the byte of data whose parity bit is to be set R\
* D1 contains a temporary working copy of DO . .
* D2 used to count that 7 bits have been tested Pa"ty Bit
ORG $400 Program origin
MOVE #7,D2 Set the counter to 7
ANDI.B #%01111111,DO Clear the parity bit to start
MOVE DO,D1 Make a working copy of DO
Next ROR.B #1,D1 Rotate 1 bit right
BCC Zero If the bit is 1 then
EOR.B #%$10000000,D0 toggle the parity bit
Zero SUB.B #1,D2 Decrement the counter
BNE Next Check another bit
STOP #$2700
END $400

ocw.utm.my @ U TM

ocw.utm.my @ HTM

Bit Manipulation Instructions

The 68000 four instruction that manipulate single bits:
— BSET Sets the specified bit to 1.
— BCLR Sets the specified bit to 0.
— BCHG Toggles (inverts) the specified bit.
— BTST Tests the value of a bit. If zero, the Z-flag is set.

The bit number for this operation can be specified in one of two
ways:
— Immediate: e.g. #0, #1, #2, ...

— Register: The specified data register contains the position of the bit to be
manipulated.

Operations are performed on:
— 1 bit of a byte if the operand is in memory or
— 1 bit of a long word if the operand is a data register. Thus:
— No instruction extension is required.

- ocwutmmy ©UIM
Bit Operations

 Some bit operations (not all) can be implemented
using logical operations with masks.

BCLR
BSET
BCHG
BTST

#4,D0
#4,D0
#4,D0
#4,D0

; same as AND.B #%11101111,D0

; same as OR.B #%00010000,DO

; same as EOR.B #%00010000,DO

; almost the same as AND.B #%00010000,DO
; but DO is not destroyed

; If bit 4 is zero, then the Z-bit of

; CCR is set to 1.

e5-37

