

Chemical Engineering Thermodynamics

Vapor/Liquid Equilibrium:

Introduction and Application

Mohammad Fadil Abdul Wahab

Consider a multicomponent system in a VLE condition, the fugacity (to be defined in Chapter 11) of species *i* for each phase is given by,

For vapor mixture

$$\hat{f}_{i}^{v} = \hat{\phi}_{i} y_{i} P$$

For liquid solution

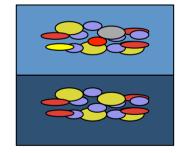
$$\hat{f}_i^l = \gamma_i x_i f_i$$

VLE criteria (to be shown/derived in chapter 11),

$$\hat{f}_i^l = \hat{f}_i^v$$

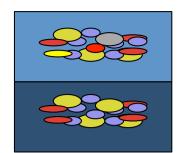
SO

$$\hat{\phi}_{i} y_{i} P = \gamma_{i} x_{i} f_{i}$$



where,

- $\hat{\phi}_{i}$ fugacity coefficient species i in gas mixture
- f_i fugacity of pure species i
- γ_i activity coefficient of species i in liquid solution



Raoult's Law

 $\hat{\phi}_{i} = 1$

For ideal gas vapor mixture in

equilibrium with ideal liquid solution

$$\gamma_i = 1$$

equation becomes $y_i P = x_i f_i$

$$y_i P = x_i f_i$$

and also for pure species in equlibrium and ideal gas vapor,

$$f_i = f_i^l = f_i^v = P = P_i^{sat}$$

$$y_i P = x_i P_i^{sat}$$
 Raoult's Law

Modified Raoult's Law

For ideal-gas mixture in equilibrium with non-ideal liquid solution

$$\hat{\phi}_{i}^{T} y_{i} P = \gamma_{i} x_{i} f_{i}$$

$$y_{i} P = \gamma_{i} x_{i} P_{i}^{\text{sat}} \quad \text{Modified Raoult's Law}$$
(10.5)

where γ_i is a function of T and x_i .

K-value (K_i)

$$K_i = \frac{y_i}{x_i} \qquad (10.10)$$

If Raoult's Law is valid,

$$y_{i}P = x_{i} P_{i}^{sat}$$

$$K_{i} = \frac{P_{i}^{sat}}{P}$$
 (10.11)

If Modified Raoult's Law is valid,

$$y_{i}P = x_{i} \gamma_{i} P_{i}^{sat}$$

$$K_{i} = \frac{\gamma_{i} P_{i}^{sat}}{P} \qquad (10.12)$$

K-value Using DePriester Chart

For light hydrocarbon mixture (commonly found in industry),

 K_i is essentially function of T and P only.

 K_i are tabulated in a chart called the DePriester chart.

Bubblepoint & Dewpoint Calculations

BUBL P: Calculate {y_i} and P, given {x_i} and T

To calculate the P when the 1st bubble appear as a result of decrease in P at constant T. Also calculate the bubble's composition $\{y_i\}$.

or

To calculate the P when the last bubble disappear as a result of increase in P at constant T. Also calculate the composition {y_i} of this bubble.

DEW P: Calculate $\{x_i\}$ and P, given $\{y_i\}$ and T

To calculate the P when the 1st dew (a drop of liquid) appear as a result of increase in P at constant T. Also calculate the composition $\{x_i\}$ of this dew.

or

To calculate the P when the last dew disappear as a result of decrease in P at constant T. Also calculate the composition $\{x_i\}$ of this dew.

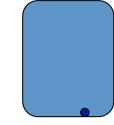
BUBL T: Calculate {y_i} and T, given {x_i} and P

To calculate the T when the 1st bubble appear as a result of increase in T at constant P. Also calculate the composition $\{y_i\}$ of this bubble.

or

To calculate the T when the last bubble disappear as a result of decrease in T at constant P. Also calculate the composition $\{y_i\}$ of this bubble.

DEW T: Calculate $\{x_i\}$ and T, given $\{y_i\}$ and P



To calculate the T when the 1st dew (a drop of liquid) appear as a result of decrease in T at constant P. Also calculate the composition $\{x_i\}$ of this dew.

or

To calculate the T when the last dew disappear as a result of increase in T at constant P. Also calculate the composition $\{x_i\}$ of this dew.

Derivation

Overall mole balance

$$T = L + V$$

Component mole balance,

$$Tz_i = Lx_i + Vy_i$$

V

L

Let T=1 mol, so V and L are mole fractions,

$$z_{i} = Lx_{i} + Vy_{i}$$

$$z_{i} = (1 - V)x_{i} + Vy_{i} \qquad (A)$$

Note: z_i is overall composition.

Substitute $y_i = K_i x_i$ into (A),

$$z_i = (1 - V)x_i + K_i x_i V = x_i (1 - V + VK_i) = x_i (1 + V(K_i - 1))$$

$$x_i = \frac{z_i}{1 + V(K_i - 1)}$$

Substitute $x_i = \frac{y_i}{K_i}$ into (A),

$$z_i = (1 - V)\frac{y_i}{K_i} + y_i V$$
 $z_i K_i = (1 - V)y_i + y_i V K_i$

$$y_{i} = \frac{z_{i}K_{i}}{1 + V(K_{i} - 1)}$$
 (10.16)

Also,

$$\sum x_i - \sum y_i = 0$$

$$\sum \frac{z_i}{1 + V(K_i - 1)} - \sum \frac{z_i K_i}{1 + V(K_i - 1)} = 0$$

$$\sum \frac{z_{i} - z_{i} K_{i}}{1 + V(K_{i} - 1)} = 0$$

Bubblepoint Calculation

At bubble point (practically all liquid) L=1, V=0 and $z_i = x_i$

$$\sum \frac{z_i - z_i K_i}{1 + V(K_i - 1)} = 0 \text{ becomes},$$

$$\sum (x_i - x_i K_i) = 0$$

$$\sum x_i = \sum x_i K_i$$

$$\sum x_i K_i = 1$$
 (10.13) Bubblepoint criteria

If Raoult's Law valid,

$$\sum x_i K_i = \sum x_i \frac{P_i^{sat}}{P} = 1 \qquad \text{so,} \quad P = \sum x_i P_i^{sat} \qquad (10.2)$$
see example 10.1

If Modified Raoult's Law valid,

$$\sum x_i K_i = \sum x_i \frac{\gamma_i P_i^{sat}}{P} = 1 \quad \text{so,} \quad P = \sum x_i \gamma_i P_i^{sat} \quad (10.6)$$

see example 10.3

Dewpoint Calculation

At dewpoint (practically all vapor): L=0, V=1 and $z_i = y_i$

$$\sum \frac{z_i - z_i K_i}{1 + V(K_i - 1)} = 0$$
 becomes,

$$\sum \frac{y_i - y_i K_i}{K_i} = 0$$

$$\sum \frac{y_i}{K_i} - \sum y_i = 0$$

$$\sum \frac{y_i}{K_i} = 1 \tag{10.14}$$

Dewpoint criteria

If Raoult's Law valid,

$$\sum \frac{y_i}{K_i} = \sum \frac{y_i}{P_i^{sat}} = 1 \qquad P = \frac{1}{\sum \frac{y_i}{P_i^{sat}}}$$
(10.3),

see example 10.1

If Modified Raoult's Law valid,

$$\sum \frac{y_i}{K_i} = \sum \frac{y_i}{\frac{\gamma_i P_i^{sat}}{P}} = 1 \qquad P = \frac{1}{\sum \frac{y_i}{\gamma_i P_i^{sat}}} \qquad (10.7),$$

see example 10.3

Relative Volatility

$$\alpha_{ik} = \frac{\frac{y_i}{x_i}}{\frac{y_k}{x_k}} = \frac{K_i}{K_k}$$

$$\alpha_{ik} = \frac{\frac{y_i}{x_i}}{\frac{y_k}{x_k}} = \frac{K_i}{K_k}$$
 at azeotrope $\alpha_{ik} = \frac{1}{1} = 1$

 $\alpha_{i\nu}$ >1 Species i is relatively more volatile $\alpha_{i\nu}$ <1 Species k is relatively more volatile

If Raoult's Law valid,

$$\alpha_{12} = \frac{\frac{P_1^{sat}}{P}}{\frac{P_2^{sat}}{P}} = \frac{P_1^{sat}}{P_2^{sat}} \quad \longleftarrow$$

Note: for higher vapor pressure means more volatile $\alpha_{12}>1$

If Modified Raoult's Law valid,

$$\alpha_{12} = \frac{\frac{\gamma_1 P_1^{sat}}{/P}}{\frac{\gamma_2 P_2^{sat}}{/P}} = \frac{\gamma_1 P_1^{sat}}{\gamma_2 P_2^{sat}}$$

Example 10.1

Plot Px_1y_1 at $T=75^{\circ}C$

Mixture: Acetonitrile(1)/Nitromethane(2)

Antoine Eqn,

$$\ln P_1^{sat} / kPa = 14.2724 - \frac{2945.47}{T / {}^{o}C + 224.00}$$

$$\ln P_2^{sat} / kPa = 14.2043 - \frac{2972.64}{T / {}^{o}C + 209.00}$$
calculate at 75°C,
$$P_1^{sat} = 83.21kPa \qquad P_2^{sat} = 41.98kPa$$

Note: Acetonitrile(1) is more volatile.

Calculate P and y_1 , given a set of x_1 and T=75°C. This is BUBL P calculation.

$$\sum x_i K_i = 1$$
 (10.13).

Let us assume Raoult's Law is valid, $P = P_b = \sum x_i P_i^{sat}$ (10.2)

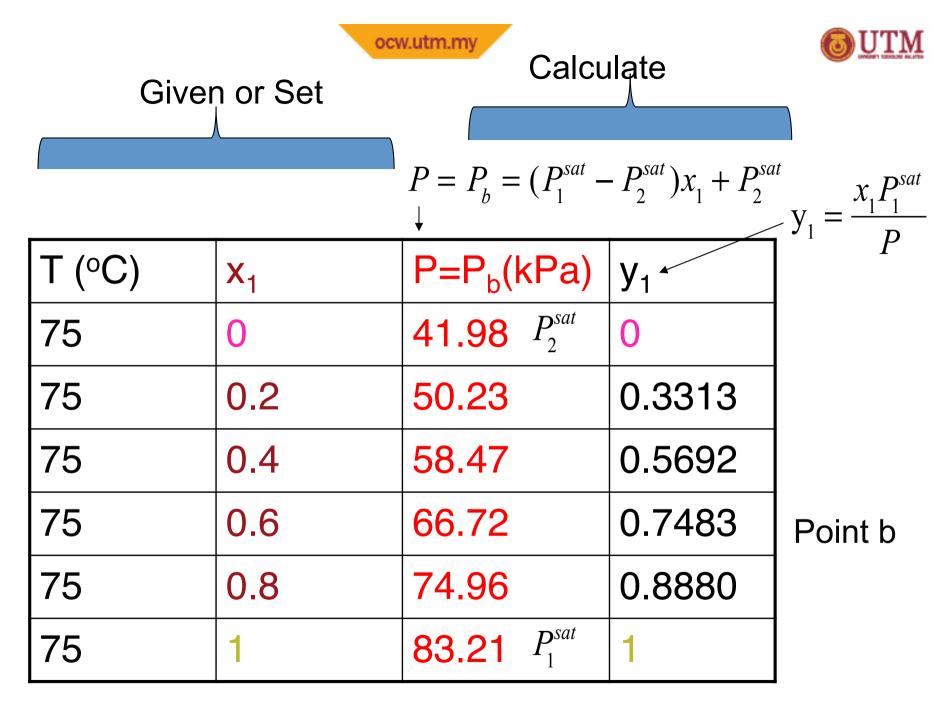
$$P = x_1 P_1^{sat} + x_2 P_2^{sat} = x_1 P_1^{sat} + (1 - x_1) P_2^{sat}$$

$$P = (P_1^{sat} - P_2^{sat})x_1 + P_2^{sat}$$
 Eqn A note: a linear line (y=mx+c)

also,
$$y_1 = \frac{x_1 P_1^{sat}}{P}$$
 Eqn B

So,

Calculate P for a set of x₁ (Eqn A) and then calculate y₁ (Eqn B)



So now plot Px₁ and Py₁ on Pxy diagram!!

Ex: Calculate P_d and x_1 , given $y_1=0.6$ and T=75°C

(i.e. what is the dew P for gas mixture at 75°C and 60% acetonitrile)

This is point c in previous Px_1y_1 diagram. Dew P calculation (Note: $z_1=y_1$).

$$\sum \frac{y_i}{K_i} = 1 \quad (10.14), \quad \text{If Raoult's Law valid,} \quad P_d = \frac{1}{\sum \frac{y_i}{P_i^{sat}}} \quad (10.3)$$

$$P_d = \frac{1}{\frac{0.6}{92.21} + \frac{0.4}{41.09}} = 59.74 kPa$$
 Compare with values from Pxy diagram.

Then calculate x₁ using,

$$x_1 = \frac{y_1 P_d}{P_1^{sat}} = \frac{0.6(59.74)}{83.21} = 0.43$$

We could also plot Pxy diagram using DEW pressure calculation.

• Set y_i , calculate P_d and x_i .

Plot Pxy using P_dx_iy_i

• DIY.....

Plot Tx_1y_1 at P=70kPa

Mixture: Acetonitrile(1)/Nitromethane(2)

Antoine Eqn,

$$T_1^{sat} / {}^{o}C = \frac{2945.47}{14.2724 - \ln P / kPa} - 224.00$$

$$T_2^{sat} / {}^{o}C = \frac{2972.64}{14.2043 - \ln P / kPa} - 209.00$$

so at 70kPa,

$$T_1^{sat} = 69.84^{\circ} C$$
 $T_2^{sat} = 89.58^{\circ} C$

As expected Acetonitrile(1) is more volatile

$$\sum x_i K_i = 1$$
 (10.13)

For Raoult's Law,
$$P = P_b = \sum x_i P_i^{sat}$$
 (10.2)

$$P = x_1 P_1^{sat} + x_2 P_2^{sat} = x_1 P_1^{sat} + (1 - x_1) P_2^{sat}$$

$$x_1 = \frac{P - P_2^{sat}}{P_1^{sat} - P_2^{sat}} \qquad \text{Eqn C}$$

Note: Since we used BUBL point calculation, T=T_b

Choose T between T_1^{sat} and T_2^{sat} , then using Antoine eqns calculate P_1^{sat} and P_2^{sat} at the chosen T and then calculate x_1 by Eqn C.

Then calculate y₁ using,

$$y_1 = \frac{x_1 P_1^{sat}}{P}$$

Plot Tx₁y₁ at P=70 kPa

Given	or Set	$x_{1} = \frac{P - P_{2}^{sat}}{P_{1}^{sat} - P_{2}^{sat}}$	$\mathbf{y}_1 =$	$=\frac{x_1 P_1^{sat}}{P}$
P (kPa)	$T=T_b(^{\circ}C)$	X ₁	y ₁	
70	69.84 T ₁ ^{sat}	1 (x ₂ =0)	1 (y ₂ =0)	
70	74	0.7378	0.8484	
70	78	0.5156	0.6759	
70	82	0.3184	0.4742	
70	86	0.1424	0.2401	
70	89.58 T ₂ ^{sat}	$0 (x_2=1)$	0 (y ₂ =1)	

So now plot Tx₁and Ty₁ on a Txy diagram!!

Ex: Calculate T_b and y_1 , given x_1 =0.6 and P=70kPa. (i.e. calculate the bubble temperature at 70kPa and 60% acetonitrile)

This is point b in previous Tx_1y_1 diagram. Note: $z_1=x_1$ Bubble temperature calculation!!

$$\sum x_i K_i = 1$$
 (10.13),

The solution is not straightforward as T is unknown. Let's see how to solve mathematically,

For Raoult's Law,
$$P_b = \sum x_i P_i^{sat}$$
 (10.2)

$$P_b = \frac{P_k^{sat}}{P_k^{sat}} \sum_i x_i P_i^{sat} = P_k^{sat} \sum_i x_i \frac{P_i^{sat}}{P_k^{sat}} = P_k^{sat} \sum_i x_i \alpha_{ik}$$

where k is a component that arbitrarily chosen.

$$P_b = P_k^{sat} \sum x_i \alpha_{ik}$$

where
$$\alpha_{ik} = \frac{P_i^{sat}}{P_k^{sat}}$$
 is relative volatility of i wrt k .

$$P_k^{sat} = \frac{P_b}{\sum x_i \alpha_{ik}} \qquad (A)$$

Also,

$$\ln \alpha_{ik} = \ln \frac{P_i^{sat}}{P_k^{sat}} = \ln P_i^{sat} - \ln P_k^{sat} = \left(A_i - \frac{B_i}{T + C_i}\right) - \left(A_k + \frac{B_k}{T + C_k}\right)$$

Solution is through iteration,

1. Start with an initial guess of T as follows,

$$T = \sum x_i T_i^{sat}$$

$$T = 0.6(69.84) + 0.4(89.58) = 77.74^{\circ} C$$

- 2. Arbitrarily pick a component, e.g. Nitromethane so, k=2
- 3. Calculate α_{ik} , (note: Number of α_{ik} is equal to total number of component)

$$\ln \alpha_{ik} = \begin{pmatrix} A_i - \frac{B_i}{T + C_i} \end{pmatrix} - \begin{pmatrix} A_k + \frac{B_k}{T + C_k} \end{pmatrix} \qquad \text{we get,}$$

$$\alpha_{12} = 1.9611$$

$$\alpha_{22} = 1$$

4. Calculate P_k sat using eqn A,

$$P_k^{sat} = \frac{P}{\sum x_i \alpha_{ik}}$$

$$P_2^{sat} = \frac{P}{x_1 \alpha_{12} + x_2 \alpha_{22}} = \frac{70}{0.6(1.9611) + 0.4(1)} = 44.3977 \text{kPa}$$

5. Calculate a new value of T using the Antoine eqn,

$$T = \frac{B_k}{A_k - \ln P_k^{sat}} - C_k \qquad T = \frac{2972.64}{14.2043 - \ln 44.3977} - 209 = 76.53^{\circ} C$$

6. Stop if this T is equal or close to earlier value of T, else use this value as a new guess. Repeat steps 3, 4 & 5 until converge.

Т	a ₁₂	P ₂ sat	Т	
77.74	1.9611	44.39	76.53	
76.53	1.9703	44.24	76.43	
76.43	1.9717	44.22	76.42	Answer
	•	•	•	(point b)

7. Finally, calculate y_i using Raoult's law (Use the Antoine Eqn for P_i^{sat})

$$y_1 = 0.7472$$

DEW T calculation

Calculate T_d and x_1 , given y_1 and P.

Example: Calculate T_d and x_1 for $z_1 = y_1 = 0.6$ and P = 70kPa. See page 356 for the solution (also by iteration) of DEW T calculation.

Answer: $T_d = 79.58$ °C

 $x_1 = 0.4351$

Example 10.4

Calculation of dew pressure and bubble pressure using K-value from DePriester chart.

Note: Why the solution is by trial and error?

Flash Calculation

Flash Calculation

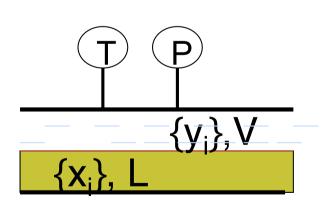
An important application of VLE!

Liquid at pressure equal or higher than P_b "flashes" or partially evaporates when the P is reduced, thus producing a vapor and liquid.

Flash calculation is to determine

V, L, $\{x_i\}$, and $\{y_i\}$ at

T and P by assuming VLE.



Note: $\{x_i\}$ composition of liquid and $\{y_i\}$ composition of vapor

As derived for VLE system,

$$y_{i} = \frac{z_{i}K_{i}}{1 + V(K_{i} - 1)}$$
 (10.16)

$$\sum y_i = 1$$
, so:

$$\sum \frac{z_i K_i}{1 + V(K_i - 1)} = 1 \qquad (10.17)$$

Solution is by trial and error.

Guess V until the summation term equal to 1. But.....

.....first we need to know whether the system is actually two-phase. In general

If
$$P_d < P < P_b$$
, two phase

or

If
$$T_b < T < T_d$$
, two phase

Examples of Flash Calculation

Example 10.5:

Flash calculation for system where

Raoult's Law valid

Example 10.6:

Flash calculation using K-value from

DePriester Chart

Dewpoint T of Mixture of Water Vapor and Non-condensable Gases

This is a special case of dew T calculation.

Solution is straightforward by the application of Raoult's Law to the condensable component H₂O (here identified as component 2).

The system contains a dew (liquid water) in VLE with mixture of water vapor and non-condensable gases (such as N_2 , CO_2 , O_2 etc.).

$$y_2 P = x_2 P_2^{sat}$$

The dew is 100% H_2O , so $x_2=1$

so
$$P_2^{sat} = y_2 P$$

Dewpoint T of Combustion Products

For stoichiometric combustion of methane, calculate dew point T of the combustion products.

$$CH_4 + 2O_2 + 2(79/21)N_2 -----> CO_2 + 2H_2O + 2(79/21)N_2$$

Mole fraction of H_2O is 2/(1+2+2(79/21)) = 0.19

$$P_2^{sat} = y_2 P$$
 $P_2^{sat} = 0.19(101.325 \text{kPa}) = 19.25 \text{kPa}$

From steam table*, $T_d = T_2^{sat} = 59.5^{\circ}C$ *You could also use Antoine Eqn.

Henry's Law

Henry's Law is VLE relation that is valid for ideal-gas mixture in equilibrium with a dilute solution, where we want to know the composition of dissolve gas *i* in the dilute solution.

For example,

- a) CO₂ and H₂O system.
- b) Air and H₂O system.

$$\hat{\phi}_{i}^{1}y_{i}^{1}P = \gamma_{i}x_{i} f_{i}$$

$$y_{i}P = x_{i} \gamma_{i}f_{i} = x_{i} \gamma_{i}P_{i}^{sat}$$

$$let H_{i} = \gamma_{i}f_{i} = \gamma_{i}P_{i}^{sat}$$

 H_i is Henry's constant (in bar) for dissolved gas (i).

so
$$y_iP = x_iH_i$$
 Henry's Law

$$y_i P = x_i H_i$$

So at dilute solution, $y_i = (H_i/P) x_i$

For constant system pressure P, $y_i = (Constant)x_i$

If we plot y_i vs x_i , we get a straight line through the origin.

So Henry's constant for dissolved gas (i) can be easily determined from experiment.

In previous example of dewpoint for combustion product, we assume the liquid is all $H_2O(x_2=1)$.

What if we want to know the mole fraction of dissolved CO₂ (component 1) in the dew (liquid)?

We could solve this using Henry's Law for dissolved gases (CO₂).

Apply Henry's law for component 1.

Use H_1 data from Table 10.1 (note: this actually valid at 25°C).

$$x_1 = \frac{y_1 P}{H_1} = \frac{(1/(1+2+7.52))(1.013bar)}{1670bar} = 3.4622 \times 10^{-5} \approx 0$$

As expected, only small amount of CO₂ present in liquid water.

See also example 10.2

If the fugacity of *i* in liquid phase is given by Henry's Law,

$$\hat{f}_i = \gamma_i x_i f_i = x_i H_i$$

If the gas is ideal solution (Lewis/Randall is valid),

$$\hat{f}_i^{id} = \phi_i y_i P$$



So we get the following version of Henry's Law if gas mixture is ideal solution,

$$\phi_i y_i P = x_i H_i$$

Extension of Example 10.3

Plot Px_1y_1 and x_1y_1 diagrams at T=318.15K

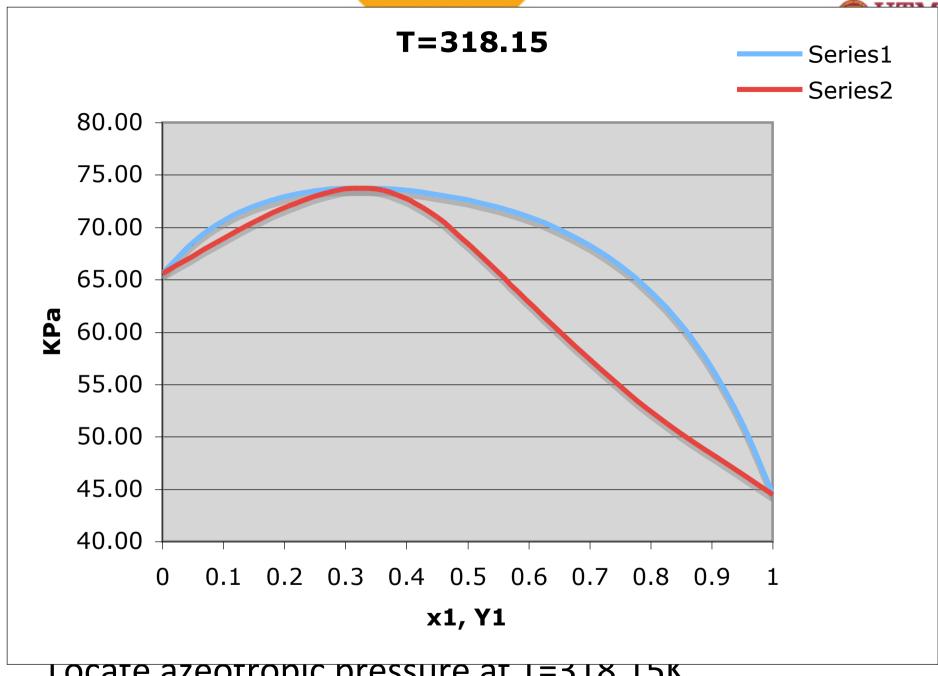
From bubblepoint calculation,

Set x₁
Calculate P_b
Calculate y₁

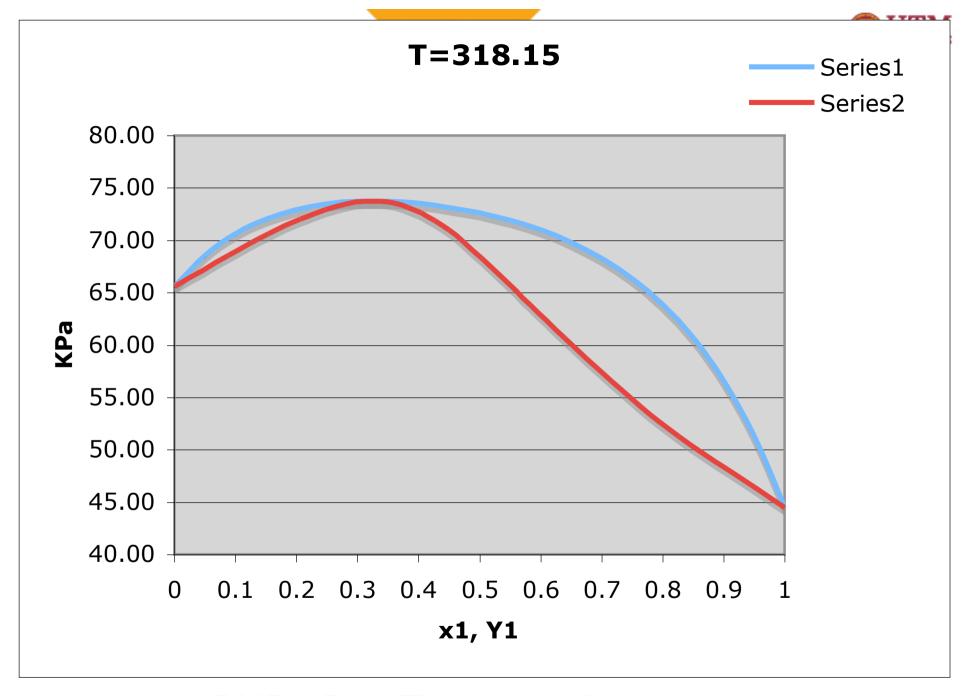
ocw.utm.my

x1	G1	G2	Р	y1
0.00	3.03	1.00	65.64	0.00
0.05	2.72	1.00	68.57	0.09
0.10	2.45	1.01	70.64	0.15
0.15	2.23	1.03	72.06	0.21
0.20	2.03	1.05	72.97	0.25
0.25	1.86	1.07	73.50	0.28
0.30	1.72	1.10	73.73	0.31
0.35	1.60	1.15	73.73	0.34
0.40	1.49	1.19	73.54	0.36
0.45	1.40	1.25	73.17	0.38
0.50	1.32	1.32	72.63	0.40
0.55	1.25	1.40	71.92	0.43
0.60	1.19	1.49	70.99	0.45
0.65	1.15	1.60	69.81	0.47
0.70	1.10	1.72	68.29	0.50
0.75	1.07	1.86	66.36	0.54
0.80	1.05	2.03	63.88	0.58
0.85	1.03	2.23	60.70	0.64
0.90	1.01	2.45	56.60	0.72
0.95	1.00	2.72	51.31	0.83
1.00	1.00	3.03	44.51	1.00

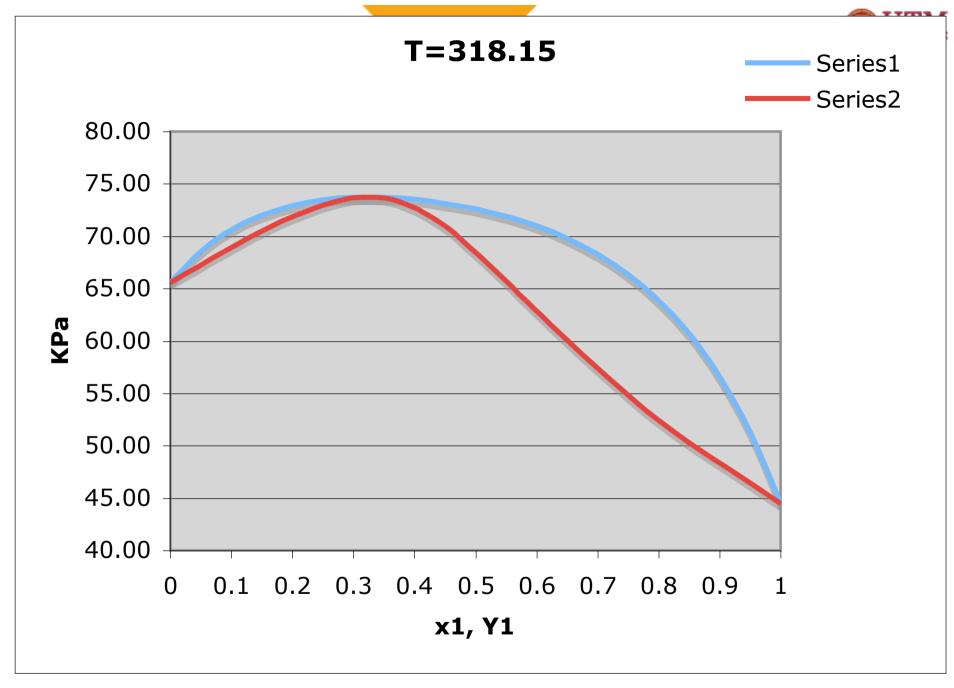
G1 is gamma1



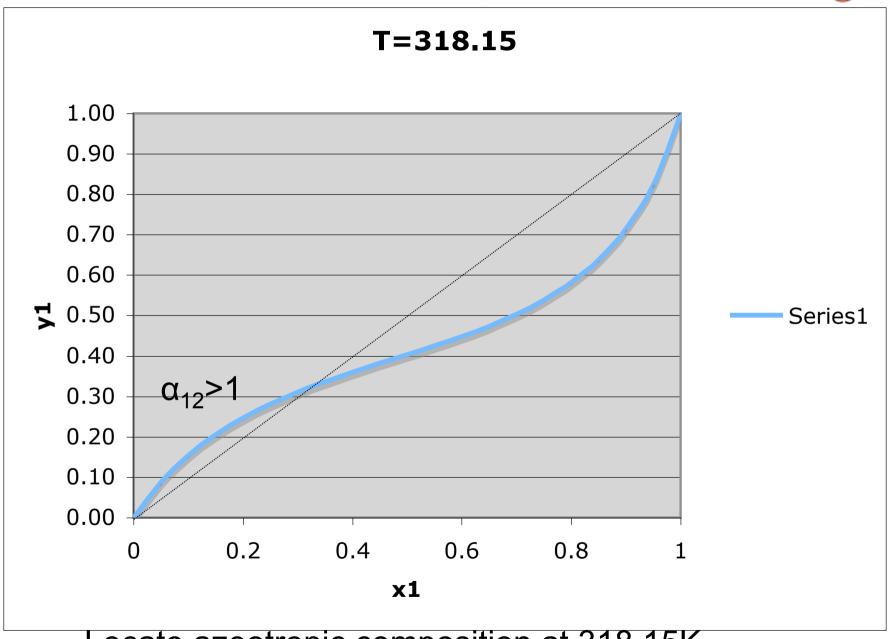
and its composition



Locate BUBL P at T=318.15K, x_1 =0.25



Locate DEW P at T=318.15K, y_1 =0.6



Locate azeotropic composition at 318.15K

A stream of mixture of methanol(1)/methyl acetate(2) is inside a pipeline where the T is 318.15K and P is 66kPa. The stream contains (60 mole percent methanol). What is the phase of the stream?

Let's check bubble pressure and dew pressure.

From example 10.3b), Dew P is 62.89kPa

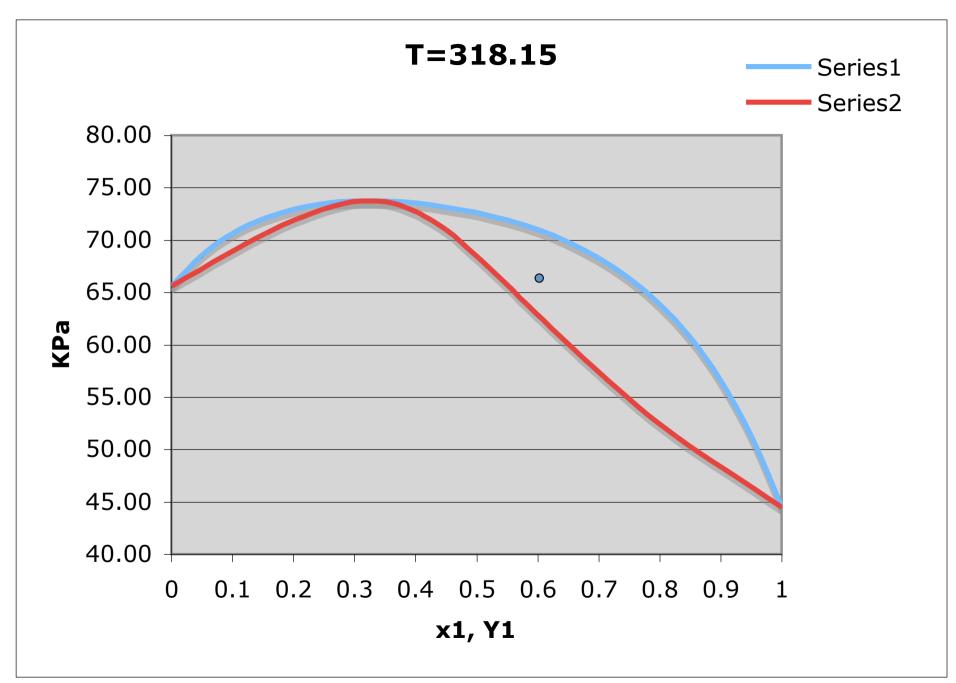
Now calculate bubble P,

$$P_{b} = x_{1} \gamma_{1} P_{1}^{sat} + x_{2} \gamma_{2} P_{2}^{sat} = 71kPa$$

P_d<P<P_b hence **two phases**!

Locate the conditions on the following Px₁y₁ diagram.

Determine V, L, $\{x_i\}$ and $\{y_i\}$ using flash calculation.



$$K_{1} = \frac{P_{1}^{sat} \gamma_{1}}{P} = \frac{P_{1}^{sat} \exp(A(x_{2})^{2})}{P}$$

$$K_{2} = \frac{P_{2}^{sat} \exp(A(x_{1})^{2})}{P}$$

We need $x_1!!$ Lets us do bubble point calculation at P=66kPa, T=318.15K and x_1

$$P_b = 66kPa = x_1 \gamma_1 P_1^{sat} + x_2 \gamma_2 P_2^{sat}$$
 (a)

$$K_1 = \frac{P_1^{sat} \gamma_1}{P} = \frac{P_1^{sat} \exp(A(x_2)^2)}{P}$$

$$K_2 = \frac{P_2^{sat} \exp(A(x_1)^2)}{P}$$

so (a) becomes,

$$66 = x_1 P_1^{sat} \exp(A(1-x_1)^2) + (1-x_1) P_2^{sat} \exp(A(x_1)^2)$$

$$66 = x_1(44.51) \exp(1.107)(1 - x_1)^2 + (1 - x_1)(65.64) \exp(1.107(x_1)^2)$$

Guess x₁,

$$x_1 = 0.7$$
 P=68.29

$$x_1 = 0.8$$
 P=63.88

$$x_1 = 0.75$$
 P=66.36

$$x_1 = 0.76$$
 P=65.91.....good enough

Now we can calculate K₁ and K₂ for flash calculation,

$$K_{1} = \frac{P_{1}^{sat}\gamma_{1}}{P} = \frac{44.51\exp(1.107(1-0.76)^{2})}{66} = 0.719$$

$$K_{2} = \frac{65.64\exp(1.107(0.76)^{2})}{66} = 1.885$$

Substitute into eqn (10.17),

$$\sum \frac{z_i(K_i)}{1+V(K_i-1)} = 1$$

$$\frac{0.6(0.719)}{1+V(0.719-1)} + \frac{(1-0.6)(1.885)}{1+V(1.885-1)} = 1$$

$$\frac{0.431}{1-0.281V} + \frac{0.754}{1+0.885V} = 1$$
(10.17)

$$\frac{0.431}{1 - 0.281V} + \frac{0.754}{1 + 0.885V} = 1$$

$$\sum = 1$$

$$V=0.50$$

$$V=0.55$$

$$V=0.70$$

$$V=0.75$$

$$V=0.73$$

So
$$V=0.73$$

So
$$V=0.73$$
 L=1-V=0.27

$$y_{i} = \frac{z_{i}K_{i}}{1 + V(K_{i} - 1)}$$
 (10.16)

$$y_1 =$$

$$y_2 =$$

$$x_i = \frac{y_i}{K_i}$$

$$x_1 =$$

$$x_2 =$$