

SKF2213: CHEMICAL ENGINEERING THERMODYNAMICS

Thermodynamic Properties for Fluids

Mohammad Fadil Abdul Wahab

Objectives

- To develop fundamental property relations (FPR) of U,H,S,G,A,V,P,T from 1st and 2nd Law of Thermodynamic.
- Using FPR to derive equations for thermodynamic properties such as H and S.
- To use the concept of residual property in the calculation of thermodynamic property.
- To develop and utilize the generalized correlation for the calculation of residual property.
- To be able to use diagram and table of thermodynamic property.

change!!

Property Relations for Homogeneous Phases

Consider the following system,

- Homogeneous

 i.e. single phase and no change in composition!
 e.g. Air
- Initial conditions P₁ and T₁
- Final conditions P₂ and T₂

1st Law (Energy Balance) for closed system,

$$d(nU) = \partial Q + \partial W$$

From definition of entropy (S),see chapter 5

$$d(nS) = \frac{\partial Q_{rev}}{T}$$

For reversible process the EB becomes,

$$d(nU) = \partial Q_{rev} + \partial W_{rev}$$

$$d(nU) = Td(nS) - Pd(nV)$$
(6.1)

We know that H=U+PV, now let us also define,

A = U-TS	Helmholtz Energy
G = H-TS	Gibbs Energy

Differentiate these properties (H, A and G),

$$d(nH) = d(nU) + Pd(nV) + nVdP$$

substitute eqn 6.1 for dnU,

$$d(nH) = Td(nS) - Pd(nV) + Pd(nV) + nVdP$$

$$d(nH) = Td(nS) + nVdP$$

Continue,

$$d(nA) = d(nU) - Td(nS) - (nS)dT$$
substitute for dnU ,
$$d(nA) = Td(nS) - Pd(nV) - Td(nS) - (nS)dT$$

$$d(nA) = -Pd(nV) - (nS)dT$$

$$d(nG) = d(nH) - Td(nS) - (nS)dT$$
substitute for dnH ,
$$d(nG) = Td(nS) + (nV)dP - Td(nS) - (nS)dT$$

$$d(nG) = (nV)dP - (nS)dT$$

For n=1,

$$dU = TdS - PdV$$

$$dH = TdS + VdP$$

$$dA = -PdV - SdT$$

$$dG = VdP - SdT$$

$$(6.7)$$

$$(6.8)$$

$$(6.9)$$

These are called fundamental property relations (FPR).

Note: The unit for TS and PV is energy unit.

Notice that the FPR for Gibbs Energy is a function of commonly measured variable P and T,

$$G = G(T,P)$$

All FPRs are in the form of,

$$dF = MdX + NdY$$
where
$$F = F(X,Y)$$
(6.11)

Since F is a state function, we can differentiate F(X,Y) as follows,

$$dF = \left(\frac{\partial F}{\partial X}\right)_{Y} dX + \left(\frac{\partial F}{\partial Y}\right)_{X} dY$$
So let,

$$M = \left(\frac{\partial F}{\partial X}\right)_{Y} \qquad N = \left(\frac{\partial F}{\partial Y}\right)_{X}$$
$$dF = MdX + NdY$$

Differentiate one more time,

$$\left(\frac{\partial M}{\partial Y}\right)_{X} = \frac{\partial^{2} F}{\partial Y \partial X} \qquad \left(\frac{\partial N}{\partial X}\right)_{Y} = \frac{\partial^{2} F}{\partial X \partial Y}$$
So,

$$\left(\frac{\partial M}{\partial Y}\right)_{V} = \left(\frac{\partial N}{\partial X}\right)_{V} \tag{6.12}$$

Eqn 6.12 is the criterion of exactness for an exact differential expression of Eqn 6.11.

Apply criterion of exactness to FPRs,

$$dU = TdS - PdV$$

$$dH = TdS + VdP$$

$$dA = -PdV - SdT$$

$$dG = VdP - SdT$$

$$\left(\frac{\partial T}{\partial V}\right)_{S} = -\left(\frac{\partial P}{\partial S}\right)_{V} \tag{6.13}$$

$$\left(\frac{\partial T}{\partial P}\right)_{S} = \left(\frac{\partial V}{\partial S}\right)_{P} \tag{6.14}$$

$$\left(\frac{\partial P}{\partial T}\right)_{V} = \left(\frac{\partial S}{\partial V}\right)_{T} \tag{6.15}$$

$$\left(\frac{\partial V}{\partial T}\right)_{P} = -\left(\frac{\partial S}{\partial P}\right)_{T} \tag{6.16}$$

These (Eqn 6.13-16) are known as Maxwell's equations

Application of FPRs and Maxwell's Eqn:

Use in the derivation of the general equation for H

$$H = H(T, P)$$

$$dH = \left(\frac{\partial H}{\partial T}\right)_{-} dT + \left(\frac{\partial H}{\partial P}\right)_{-} dP \qquad (a)$$

Energy balance,

$$\partial Q + \partial W = dU + \partial E_K + \partial E_P$$

$$\partial Q - PdV = dU$$

$$\partial Q = dU + PdV$$

$$\partial Q = (dH)_P$$

$$C_p = \frac{\partial Q}{\partial T} = \left(\frac{\partial H}{\partial T}\right)_P$$

Note: for constant pressure process,

$$dH = dU + dPV = dU + PdV + V dP$$

So eqn (a) becomes,

$$dH = C_P dT + \left(\frac{\partial H}{\partial P}\right)_T dP$$
 (b)

$$dH = TdS + VdP$$

differentiate wrt P at constant T,

$$\left(\frac{\partial H}{\partial P}\right)_{T} = T\left(\frac{\partial S}{\partial P}\right)_{T} + V\left(\frac{\partial P}{\partial P}\right)_{T}$$
$$\left(\frac{\partial H}{\partial P}\right)_{T} = T\left(\frac{\partial S}{\partial P}\right)_{T} + V$$

From Maxwell' eqn, $\left(\frac{\partial V}{\partial T}\right)_{P} = -\left(\frac{\partial S}{\partial P}\right)_{T}$

$$\left(\frac{\partial H}{\partial P}\right)_{T} = -T\left(\frac{\partial V}{\partial T}\right)_{P} + V \tag{6.19}$$

Substitute into (b),

$$dH = C_P dT + \left[V - T \left(\frac{\partial V}{\partial T} \right)_P \right] dP \qquad \qquad \left(6.20 \right) \qquad \text{This general eqn for enthalpy is in term of measured variable P,V,T}$$

Application of FPRs and Maxwell's Eqn

- to derive general equation for S

$$S = S(T, P)$$

$$dS = \left(\frac{\partial S}{\partial T}\right)_{P} dT + \left(\frac{\partial S}{\partial P}\right)_{T} dP$$
 (b)

From FPR,

$$dH = TdS + VdP$$

$$\left(\frac{\partial H}{\partial T} \right)_{P} = T \left(\frac{\partial S}{\partial T} \right)_{P} + V \left(\frac{\partial P}{\partial T} \right)_{P} = T \left(\frac{\partial S}{\partial T} \right)_{P} = C_{p}$$

$$\left(\frac{\partial S}{\partial T} \right)_{P} = \frac{C_{p}}{T}$$

From Maxwell's equation, $\left(\frac{\partial V}{\partial T}\right)_P = -\left(\frac{\partial S}{\partial P}\right)_T$ so, $\left(\frac{\partial S}{\partial P}\right)_T = -\left(\frac{\partial V}{\partial T}\right)_P$

Substitute into (b),

$$dS = C_P \frac{dT}{T} - \left(\frac{\partial V}{\partial T}\right)_P dP \qquad (6.21)$$

Application of General Equation of *H* (Eqn 6.20) and *S* (Eqn 6.21) for Homogenous and Constant Composition Fluid.

-For system with ideal gas,
$$PV = RT$$
, $V = \frac{RT}{P}$, so $\left(\frac{\partial V}{\partial T}\right)_{P} = \frac{R}{P}$

Substitute into (6.20) and (6.21),

$$dH^{ig} = C_P^{ig} dT + \left[V - T \left(\frac{R}{P} \right) \right] dP = C_P^{ig} dT + \left[V - V \right] dP$$

$$dH^{ig} = C_P^{ig} dT (6.23)$$

$$dS^{ig} = C_P^{ig} \frac{dT}{T} - \frac{R}{P} dP \tag{6.24}$$

These are similar to eqn 4.2 and eqn 5.14

-Alternative forms for liquids

From Maxwell's eqn and the definition of volume expansivity,

Also from 6.19,

$$\left(\frac{\partial H}{\partial P}\right)_{T} = V - T\left(\frac{\partial V}{\partial T}\right)_{P} = \left(1 - \beta T\right)V \tag{6.26}$$

Substitute into 6.20,

$$dH = C_P dT + \left[V - T \left(\frac{\partial V}{\partial T} \right)_P \right] dP \tag{6.20}$$

$$dH = C_P dT + (1 - \beta T)VdP \tag{6.28}$$

This is alternative form for liquid.

For entropy,

$$\left(\frac{\partial S}{\partial P}\right)_{T} = -\left(\frac{\partial V}{\partial T}\right)_{P} = -\beta V \tag{6.25}$$

Substitute into eqn 6.21,

$$dS = C_P \frac{dT}{T} - \left(\frac{\partial V}{\partial T}\right)_P dP \tag{6.21}$$

$$dS = C_P \frac{dT}{T} - \beta V dP \tag{6.29}$$

This is alternative form for liquid.

See example 6.2

• For incompressible liquid $(\beta = \kappa = 0)$,

$$C_P = C_V$$

Let's look again at general equation for enthalpy for homogenous and constant composition system

$$dH = C_P dT + \left[V - T \left(\frac{\partial V}{\partial T} \right)_P \right] dP \tag{6.20}$$

To use eqn 6.20, we needs

- Initial and final T & P
- PVT relation or PVT data
- \bullet C_P

For gas phase however, most C_P are tabulated for ideal gas only i.e. C_p^{ig} (Table C.1)

Unless we have actual C_P for gases, we can't use eqn 6.20 to calculate the enthalpy for real (actual) gas!!

How can we calculate the enthalpy of a real gas using an ideal gas heat capacity?

Well,

- a. First we calculate H^{ig} using C_{P}^{ig} .
- b. Then we use PVT relation or PVT data to determine the residual enthalpy (H^R) which is the DIFFERENCE between real enthalpy (H) and ideal gas enthalpy (H^{ig}).

Residual Enthalpy
$$\equiv H^R = H - H^{ig}$$

c. So, the real enthalpy is found by adding H^R to the H^{ig} .

$$H = H^{ig} + H^{R}$$

Residual Properties

Residual Property = Real Property - Ideal Gas Property

$$H^{R} = H - H^{ig}$$
 $S^{R} = S - S^{ig}$ $G^{R} = G - G^{ig}$ etc.

For example, to calculate ΔH or H_2 - H_1 we shall use the hypothetical path.

$$\Delta H = \Delta H_1 + \Delta H_2 + \Delta H_3$$

$$\Delta H = \Delta H_1 + \Delta H_2^{ig} + \Delta H_3$$

$$\Delta H = \left(H_{1}^{ig} - H_{1} \right) + \left\langle C_{P}^{ig} \right\rangle_{H} \left(T_{2} - T_{1} \right) + \left(H_{2} - H_{2}^{ig} \right)$$

$$\Delta H = -H_1^R + \left\langle C_P^{ig} \right\rangle_H \left(T_2 - T_1 \right) + H_2^R$$

$$\Delta H = \left\langle C_P^{ig} \right\rangle_H \left(T_2 - T_1 \right) + H_2^R - H_1^R \tag{6.93}$$

Now we need to figure out how to determine *H*^R?

Note,

 $\langle C_P^{ig} \rangle_{\perp}$ is mean heat capacity and is given by equation (4.8)

To determine H^R , let us start with the Gibbs Free Energy.

$$G = G(T, P)$$

divide by RT and differentiate,

$$d\left(\frac{G}{RT}\right) = \frac{1}{RT}dG + \frac{G}{R}d\left(\frac{1}{T}\right) = \frac{1}{RT}dG - \frac{G}{RT^2}dT$$

Substitute FPR for dG,

$$d\left(\frac{G}{RT}\right) = \frac{1}{RT}\left(VdP - SdT\right) - \frac{\left(H - TS\right)}{RT^2}dT = \frac{V}{RT}dP - \frac{S}{RT}dT - \frac{H}{RT^2}dT + \frac{S}{RT}dT$$

$$d\left(\frac{G}{RT}\right) = \frac{V}{RT}dP - \frac{H}{RT^2}dT \tag{6.37}$$

Let us do for residual Gibbs energy,

$$G^R = G - G^{ig}$$

divide by RT and differentiate,

$$d\left(\frac{G^R}{RT}\right) = d\left(\frac{G}{RT}\right) - d\left(\frac{G^{ig}}{RT}\right)$$

Apply eqn 6.37, we get

$$d\left(\frac{G^{R}}{RT}\right) = \frac{\left(V - V^{ig}\right)}{RT}dP - \frac{\left(H - H^{ig}\right)}{RT^{2}}dT$$

$$d\left(\frac{G^R}{RT}\right) = \frac{V^R}{RT}dP - \frac{H^R}{RT^2}dT \tag{6.42}$$

Apply criterion of exactness.

$$\frac{V^R}{RT} = \left[\frac{\partial \left(\frac{G^R}{RT}\right)}{\partial P}\right]_T \tag{6.43}$$

$$\frac{H^{R}}{RT} = -T \left[\frac{\partial \left(\frac{G^{R}}{RT} \right)}{\partial T} \right]_{R} \tag{6.44}$$

Rearrange eqn 6.43 and integrate from ideal gas state (P=0) to arbitrary P (actual P),

$$\int_{ig}^{act.} d\left(\frac{G^R}{RT}\right) = \int_{0}^{P} \frac{V^R}{RT} dP$$

$$\frac{G^R}{RT} - 0 = \int_0^P \frac{V^R}{RT} dP = \int \frac{V - V^{ig}}{RT} dP$$

$$\frac{G^R}{RT} = \int \left(\frac{ZRT}{P} - \frac{RT}{P}\right) \frac{1}{RT} dP$$

$$\frac{G^R}{RT} = \int \frac{\left(Z - 1\right)}{P} dP \tag{6.49}$$

Differentiate wrt. T at constant P,

$$\left(\frac{d\left(\frac{G^{R}}{RT}\right)}{dT}\right)_{P} = \int \left[\left(\frac{\partial\left(\frac{Z}{P}\right)}{\partial T}\right)_{P} - \left(\frac{\partial\left(\frac{1}{P}\right)}{\partial T}\right)_{P}\right] dP = \int \frac{1}{P} \left(\frac{\partial Z}{\partial T}\right)_{P} dP = \int \left(\frac{\partial Z}{\partial T}\right)_{P} dP = \int \left(\frac{\partial Z}{\partial T}\right)_{P} dP$$

Substitute into eqn 6.44 for H^R

We will get,

$$\frac{H^R}{RT} = -T \int_0^P \left(\frac{\partial Z}{\partial T}\right)_P \frac{dP}{P}$$
 (6.46)

Similarly from,

$$\frac{S^R}{R} = \frac{H^R}{RT} - \frac{G^R}{RT}$$

We will get,

$$\frac{S^{R}}{R} = -T \int_{0}^{P} \left(\frac{\partial Z}{\partial T} \right)_{P} \frac{dP}{P} - \int_{0}^{P} \left(Z - 1 \right) \frac{dP}{P} \tag{6.48}$$

 Hence, as in eqn 6.46 and 6.48, we need either PVT data or correlations for Z to solve for H^R and S^R.

Enthalpy for 'real' gas

$$H = H^{ig} + H^{R}$$

$$100 \text{ note: } \Delta H^{ig} = H^{ig} - H^{ig}_{o} = \int_{T_{o}}^{T} C_{P}^{ig} dT$$

$$100 \text{ H} = H^{ig}_{o} + \int_{T_{o}}^{T} C_{P}^{ig} dT + H^{R}$$

$$100 \text{ H} = H^{ig}_{o} + \int_{T_{o}}^{T} C_{P}^{ig} dT$$

$$100 \text{ H} = H^{ig}_{o} + \left\langle C_{P}^{ig} \right\rangle_{H} \left(T - T_{o}\right) + H^{R}$$

$$100 \text{ H} = H^{ig}_{o} + \left\langle C_{P}^{ig} \right\rangle_{H} \left(T - T_{o}\right) + H^{R}$$

$$100 \text{ H} = H^{ig}_{o} + \left\langle C_{P}^{ig} \right\rangle_{H} \left(T - T_{o}\right) + H^{R}$$

$$100 \text{ H} = H^{ig}_{o} + \left\langle C_{P}^{ig} \right\rangle_{H} \left(T - T_{o}\right) + H^{R}$$

$$100 \text{ H} = H^{ig}_{o} + \left\langle C_{P}^{ig} \right\rangle_{H} \left(T - T_{o}\right) + H^{R}$$

$$100 \text{ H} = H^{ig}_{o} + \left\langle C_{P}^{ig} \right\rangle_{H} \left(T - T_{o}\right) + H^{R}$$

$$100 \text{ H} = H^{ig}_{o} + \left\langle C_{P}^{ig} \right\rangle_{H} \left(T - T_{o}\right) + H^{R}$$

$$100 \text{ H} = H^{ig}_{o} + \left\langle C_{P}^{ig} \right\rangle_{H} \left(T - T_{o}\right) + H^{R}$$

$$100 \text{ H} = H^{ig}_{o} + \left\langle C_{P}^{ig} \right\rangle_{H} \left(T - T_{o}\right) + H^{R}$$

$$100 \text{ H} = H^{ig}_{o} + \left\langle C_{P}^{ig} \right\rangle_{H} \left(T - T_{o}\right) + H^{R}$$

Note: Here the reference state is ideal gas at T_o , P_o . $\Delta H = H_2 - H_1$ is calculated as follows,

$$H_{1} = H_{o}^{ig} + \left\langle C_{P}^{ig} \right\rangle_{H} \left(T_{1} - T_{o} \right) + H_{1}^{R}$$

$$H_{2} = H_{o}^{ig} + \left\langle C_{P}^{ig} \right\rangle_{H} \left(T_{2} - T_{o} \right) + H_{2}^{R}$$

$$\Delta H = H_{2} - H_{1} = \left\langle C_{P}^{ig} \right\rangle_{H} \left(T_{2} - T_{1} \right) + H_{2}^{R} - H_{1}^{R}$$
(6.93)

Similarly, entropy for 'real' gas

$$S = S^{ig} + S^{R}$$

$$S = S_{o}^{ig} + \int_{T_{o}}^{T} C_{P}^{ig} \frac{dT}{T} - R \ln \frac{P}{P_{o}} + S^{R}$$

$$S = S_{o}^{ig} + \left\langle C_{P}^{ig} \right\rangle_{S} \ln \frac{T}{T_{o}} - R \ln \frac{P}{P_{o}} + S^{R}$$

$$\Delta S = \left\langle C_{P}^{ig} \right\rangle_{S} \ln \frac{T_{2}}{T_{1}} - R \ln \frac{P_{2}}{P_{1}} + S_{2}^{R} - S_{1}^{R}$$

$$(6.53)$$

where

$$\left\langle C_{P}^{ig} \right\rangle_{S} = R \left(A + \left[BT_{o} + \left(CT_{o}^{2} + \frac{D}{\tau^{2}T_{o}^{2}} \right) \left(\frac{\tau + 1}{2} \right) \right] \left(\frac{\tau - 1}{\ln \tau} \right) \right) \tag{5.17}$$

H^R and S^R by EOS

Using two-term Virial Equation

Combined Eqn 3.38, 6.49 and 6.44 will give,

$$\frac{H^R}{RT} = \frac{P}{R} \left(\frac{B}{T} - \frac{dB}{dT} \right) \tag{6.55}$$

$$\frac{S^R}{R} = -\frac{P}{R} \frac{dB}{dT} \tag{6.56}$$

Using three-term Virial Equation

Combined Eqn 3.40, 6.49 in term of p

$$\frac{H^R}{RT} = T \left[\left(\frac{B}{T} - \frac{dB}{dT} \right) \rho + \left(\frac{C}{T} - \frac{1}{2} \frac{dC}{dT} \right) \rho^2 \right]$$
 (6.62)

Later we will show a much easier to use generalized virial-coefficient eqn....

Using Generic Cubic EOS

$$\frac{H^R}{RT} = Z - 1 + \left[\frac{d\ln\alpha(T_r)}{d\ln T_r} - 1\right]qI \tag{6.67}$$

$$\frac{S^R}{R} = \ln(Z - \beta) + \frac{d \ln \alpha(T_r)}{d \ln T_r} qI$$
 (6.68)

Where

$$\beta = \Omega \frac{P_r}{T_r} \qquad (3.53) \qquad q = \frac{\Psi \alpha(T)_r}{\Omega T_r} \qquad (3.54)$$

and

For
$$\varepsilon = \sigma$$
, For $\varepsilon \neq \sigma$,
$$I = \frac{\beta}{Z + \varepsilon \beta}$$

$$I = \frac{1}{\sigma - \varepsilon} \ln \left(\frac{Z + \sigma \beta}{1 + \varepsilon \beta} \right)$$

Note: We first have to solve for Z, using eqn 3.52 for vapor and vapor-like root.

H^R and S^R from Generalized Correlations

from

$$P = P_c P_r$$
 $dP = P_c dP_r$
 $T = T_c T_r$ $dT = T_c dT_r$

Substitute into eqn 6.46 and 6.48,

$$\frac{H^R}{R} = -T_c^2 T_r^2 \int_o^{P_r} \left(\frac{\partial Z}{T_c \partial T_r} \right)_{P_r} \frac{P_c dP_r}{P_c P_r} = -T_r^2 \int_o^{P_r} \left(\frac{\partial Z}{\partial T_r} \right)_{P_r} \frac{dP_r}{P_r}$$
(6.83)

$$\frac{S^R}{R} = -T_c T_r \int_o^{P_r} \left(\frac{\partial Z}{T_c \partial T_r} \right)_{P_c} \frac{P_c dP_r}{P_c P_r} - \int_o^{P_r} \left(Z - 1 \right) \frac{P_c dP_r}{P_c P_r} = -T_r \int_o^{P_r} \left(\frac{\partial Z}{\partial T_r} \right)_{P_c} \frac{dP_r}{P_r} - \int_o^{P_r} \left(Z - 1 \right) \frac{dP_r}{P_r}$$
(6.84)

The Lee/Kesler Correlation

From

$$Z = Z^0 + \omega Z^1$$

$$\left(\frac{\partial Z}{\partial T_r}\right)_{P_r} = \left(\frac{\partial Z^o}{\partial T_r}\right)_{P_r} + \omega \left(\frac{\partial Z'}{\partial T_r}\right)_{P_r}$$

Substitute into eqn 6.83 and 6.84,

$$\frac{H^{R}}{RT_{c}} = -T_{r}^{2} \int_{o}^{P_{r}} \left(\frac{\partial Z^{o}}{\partial T_{r}} \right)_{P_{r}} \frac{dP_{r}}{P_{r}} - \omega T_{r}^{2} \int_{o}^{P_{r}} \left(\frac{\partial Z'}{\partial T_{r}} \right)_{P_{r}} \frac{dP_{r}}{P_{r}}$$

$$\frac{S^{R}}{R} = -T_{r} \int_{o}^{P_{r}} \left[\left(\frac{\partial Z^{o}}{\partial T_{r}} \right)_{P_{r}} + \omega \left(\frac{\partial Z'}{\partial T_{r}} \right)_{P_{r}} \right] \frac{dP_{r}}{P_{r}} - \int_{o}^{P_{r}} \left(Z^{o} + \omega Z' - 1 \right) \frac{dP_{r}}{P_{r}}$$

$$\frac{S^{R}}{R} = -\int_{o}^{P_{r}} \left[T_{r} \left(\frac{\partial Z^{o}}{\partial T_{r}} \right)_{P_{r}} + Z^{o} - 1 \right] \frac{dP_{r}}{P_{r}} - \omega \int_{o}^{P_{r}} \left[T_{r} \left(\frac{\partial Z'}{\partial T_{r}} \right)_{P_{r}} + Z' \right] \frac{dP_{r}}{P_{r}}$$

$$\frac{H^R}{RT_c} = \frac{\left(H^R\right)^0}{RT_c} + \omega \frac{\left(H^R\right)^1}{RT_c} \tag{6.85}$$

$$\frac{S^R}{R} = \frac{\left(S^R\right)^0}{R} + \omega \frac{\left(S^R\right)^1}{R_c} \tag{6.86}$$

Tables E5-E12 developed by Lee/Kesler give the values for the followings,

$$\frac{\left(H^R\right)^0}{RT_c}$$
, $\frac{\left(H^R\right)^1}{R_cT_c}$, $\frac{\left(S^R\right)^0}{R}$, $\frac{\left(S^R\right)^1}{R_c}$

Substitute these values into equation 6.85, we get

$$H^{R} = \left[\frac{\left(H^{R} \right)^{0}}{RT_{c}} + \omega \frac{\left(H^{R} \right)^{1}}{RT_{c}} \right] RT_{c}$$

Generalized second-virial-coefficient

$$Z = 1 + B^{o} \frac{P_r}{T_r} + \omega B' \frac{P_r}{T_r}$$

Differentiate,

$$\left(\frac{\partial Z}{\partial T_r} \right)_{P_r} = P_r \left(\left(\frac{dB^o}{dT_r} \right) \left(\frac{1}{T_r} \right) + B^o \frac{d \left(\frac{1}{T_r} \right)}{dT_r} \right) + \omega P_r \left(\left(\frac{dB^o}{dT_r} \right) \left(\frac{1}{T_r} \right) + B^o \frac{d \left(\frac{1}{T_r} \right)}{dT_r} \right)$$

$$\left(\frac{\partial Z}{\partial T_r} \right)_{P_r} = P_r \left(\left(\frac{dB^o}{dT_r} \right) \left(\frac{1}{T_r} \right) - \frac{B^o}{T_r^2} \right) + \omega P_r \left(\left(\frac{dB^o}{dT_r} \right) \left(\frac{1}{T_r} \right) - \frac{B^o}{T_r^2} \right)$$

Substitute into eqn 6.83 and 6.84,

$$\frac{H^{R}}{RT_{c}} = -T_{r} \left[\int_{o}^{P_{r}} \left(\frac{\partial B^{o}}{\partial T_{r}} - \frac{B^{o}}{T_{r}} \right) + \omega \left(\frac{\partial B^{'}}{\partial T_{r}} - \frac{B^{'}}{T_{r}} \right) \right] dP_{r}$$

$$\frac{S^{R}}{R} = -\int_{o}^{P_{r}} \left(\frac{\partial B^{o}}{\partial T_{r}} - \omega \frac{\partial B^{'}}{\partial T_{r}} \right) dP_{r}$$

As B^0 and B^1 are function of T only, the terms in parenthesis are constants, so integrate at constant T gives:

$$\frac{H^R}{RT_c} = P_r \left[B^0 - T_r \frac{\partial B^0}{\partial T_r} + \omega \left(B^1 - T_r \frac{\partial B^1}{\partial T_r} \right) \right] \tag{6.87}$$

$$\frac{S^{R}}{R} = -P_{r} \left(\frac{\partial B^{0}}{\partial T_{r}} - \omega \frac{\partial B^{1}}{\partial T_{r}} \right) \tag{6.88}$$

Where

$$B^{0} = 0.083 - \frac{0.422}{T_{r}^{1.6}}$$
 (3.65)
$$B^{1} = 0.139 - \frac{0.172}{T_{r}^{4.2}}$$
 (3.66)

$$\frac{dB^0}{dT_r} = \frac{0.675}{T_r^{2.6}} \tag{6.89}$$

$$\frac{dB^1}{dT_r} = \frac{0.722}{T_r^{5.2}}$$

Z, H^R and S^R for Mixtures

$$Z = Z^0 + \omega Z^1$$

$$\frac{H^R}{RT_c} = \frac{\left(H^R\right)^0}{RT_c} + \omega \frac{\left(H^R\right)^1}{RT_c}$$

$$\frac{H^R}{RT_c} = \frac{\left(H^R\right)^0}{RT_c} + \omega \frac{\left(H^R\right)^1}{RT_c} \tag{6.85}$$

$$\frac{S^R}{R} = \frac{\left(S^R\right)^0}{R} + \omega \frac{\left(S^R\right)^1}{R_c} \tag{6.86}$$

Where,

$$\omega_P = \sum_i y_i \omega_i$$
 $T_{pc} = \sum_i y_i T_{ci}$ $P_{pc} = \sum_i y_i P_{ci}$

$$T_{pr} = \frac{T}{T_{po}}$$

Refer to Table E5-E12 for values of,

$$\frac{\left(H^R\right)^0}{RT_c}$$
, $\frac{\left(H^R\right)^1}{R_cT_c}$, $\frac{\left(S^R\right)^0}{R}$, $\frac{\left(S^R\right)^1}{R_c}$

Refer to Table E1-E4 for values Z^0 and Z^1

Phase Equilibrium for System with Pure Substance

T, P

THE STATE OF THE S

Two-Phase Systems

- Closed system
- Two phase in equilibrium (vapor-liquid equilibrium, VLE) at T, P, n^I, n^V

For this system,

$$G(T,P,n^l,n^V)$$

$$d(nG) = \left(\frac{\partial nG}{\partial T}\right)_{P,n^l,n^v} dT + \left(\frac{\partial nG}{\partial P}\right)_{T,n^l,n^v} dP + \left(\frac{\partial nG}{\partial n^l}\right)_{T,P,n^v} dn^l + \left(\frac{\partial nG}{\partial n^v}\right)_{T,P,n^l} dn^v$$

For constant T, P and overall composition,

$$0 = \bar{G}^l dn^l + \bar{G}^v dn^v$$

Where we define partial molar property as,

$$\overline{G}^{l} = \left(\frac{\partial nG}{\partial n^{l}}\right)_{T,P,n^{v}} \qquad \overline{G}^{v} = \left(\frac{\partial nG}{\partial n^{v}}\right)_{T,P,n^{l}}$$

Since this is pure substance, the partial molar property of liquid is actually the property of liquid!! i.e.

$$\bar{G}^l = G^l$$
 and $\bar{G}^v = G^v$

Note: Definition of Partial Molar Properties in Chapter 11

$$\bar{M}_{i} = \left[\frac{\partial(nM)}{\partial n_{i}}\right]_{P,T,n_{i}} \tag{11.7}$$

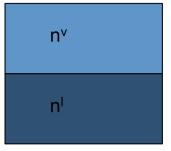
Where $M \equiv V, U, H, S, G$ etc.

 M_i is a property of pure species i

 \overline{M}_i is property of species i inside the mixture or solution

Continue,

Also from mole balance,



$$n^l + n^v = n^t$$
 Note: Closed system $dn^l + dn^v = dn^t$ $dn^l = -dn^v$

ocw.utm.my

$$0 = \bar{G}^l dn^l - \bar{G}^v dn^l$$

$$(G^l - G^v)dn^l = 0$$
$$G^l = G^v$$

This is the phase equilibrium criteria (or vapor liquid equilibrium criteria) for pure substance.

Let us check our steam table at Tsat = 100°C,

$$G^{v} = H^{V} - TS^{V} = 2676 - 373.15(7.3554) = -68.6 \text{ kJ/kg}$$

 $G^{l} = H^{l} - TS^{l} = 419.1 - 373.15(1.3069) = -68.6 \text{ kJ/kg}$

Consider system A at 2 different equilibrium conditions,

in equilibrium at saturation conditions 1:

$$T_1, P_1, G^{11}, G^{v1}$$

and

in equilibrium at saturation conditions 2:

$$T_2$$
, P_2 , G^{12} , G^{v2}

From equilibrium criteria,

$$G^{l1} = G^{V1} \qquad \text{Eqn } 1$$

$$G^{l2} = G^{V2} \qquad \text{Eqn 2}$$

Let Eqn 2 – Eqn 1,

$$G^{l2} - G^{l1} = G^{V2} - G^{V1}$$
$$dG^{l} = dG^{v}$$

From FPR,

$$V^{l}dP^{sat} - S^{l}dT = V^{v}dP^{sat} - S^{v}dT$$

$$\frac{dP^{sat}}{dT} = \frac{\Delta S^{lv}}{\Delta V^{lv}}$$

$$dH = TdS + VdP^{1}$$

But for vaporization of pure substance at constant P,

$$\Delta H^{lv} = T\Delta S^{lv} + 0$$

Substitute,

$$\frac{dP^{sat}}{dT} = \frac{\Delta H^{lv}}{T \Lambda V^{lv}}$$
 Persamaan Clapeyron (6.72) or (4.11)

The equation could also be written as follows,

$$\frac{d \ln P^{sat}}{d(\frac{1}{T})} = -\frac{\Delta H^{lv}}{R\Delta Z^{lv}}$$
 Clapeyron Equation (6.74)

At low pressure (ideal gas),
$$V^{v} = \frac{RT}{P^{sat}}$$
, and also $V^{l} << V^{v}$

Clapeyron eqn 6.72 becomes,

$$\frac{dP^{sat}}{dT} = \frac{\Delta H^{vap}}{RT^2}$$
 Clausius/Clapeyron equation
$$\frac{P^{sat}}{P^{sat}}$$

or,

$$\frac{dP^{sat}}{P^{sat}} = \frac{\Delta H^{vap}}{R} \qquad \text{and} \qquad \Delta H^{vap} = -R \frac{d \ln P^{sat}}{d \left(\frac{1}{T}\right)} \qquad \text{To solve this equation, we only need either vapor pressure data or equation relating vapor}$$

pressure to boiling point.,

Vapor Pressure (Psat) vs Boiling Point Temp (Tsat)

1. Antoine equation,

$$\ln P^{sat} = A - \frac{B}{T^{sat} + C} \tag{6.76}$$

See Table B2 for the constants

2. Wagner equation,

$$lnP_r^{sat} = \frac{A\tau + B\tau^{1.5} + C\tau^3 + D\tau^6}{1 - \tau}$$
 (6.77)

$$\tau=1-T_r$$

3. AIChE (1984) equation,

$$lnP^{sat} = A + \frac{B}{T^{sat}} + ClnT^{sat} + D(T^{sat})^{E}$$

4. Also, we could use Lee and Kesler Correlations

$$lnP_r^{sat}\left(T_r\right) = lnP_r^0\left(T_r\right) + \omega lnP_r^1\left(T_r\right)$$
(6.78)

Where,

$$lnP_{r}^{0}(T_{r}) = 5.92714 - \frac{6.09648}{T_{r}} - 1.28862 \ln T_{r} + 0.169347 T_{r}^{6}$$

$$lnP_{r}^{1}(T_{r}) = 15.2518 - \frac{15.6875}{T_{r}} - 13.4721 \ln T_{r} + 0.43577 T_{r}^{6}$$

$$\omega = \frac{lnP_{rm}^{sat}(T_{r}) - lnP_{r}^{0}(T_{rm})}{lnP_{r}^{1}(T_{rm})}$$

Note: This correlation was developed for non-polar liquids.

Thermodynamic Properties for Two-Phase Liquid/Vapor System

$$M = M^l + x^{\nu} \Delta M^{l\nu}$$

$$M \equiv V, U, H, S$$
 etc.

 x^{ν} is also known as **quality**, that is the mass fraction of vapor in the system,

$$x^{v} = m^{v}/m^{T} = n^{v}/n^{T}$$

Thermodynamic Diagrams

Show the relationship of thermodynamic variables (T, P,V, H, S) on a graph for a particular substance.

For example:

- TS Diagram, PH Diagram, PV Diagram, HT Diagram
- HS Diagram (known as Mollier Diagram)

Useful for analysis of thermodynamic processes as the paths of processes are easily traced and visualized.

Thermodynamic Tables

- Thermodynamic table enable us to read values of thermodynamic properties accurately.
- Usually requires interpolation (as well as extrapolation). For example:
 - Ammonia Table, Freon Table, Methane Table, Propane Table
 - Saturated Table

```
(T \ vs \ P, \ V^{sat \ liq}, \ \Delta V^{lv}, \ V^{sat \ vap}, \ U^{sat \ liq}, \ \Delta U^{lv}, \ U^{sat \ vap}, \ H^{sat \ liq}, \ \Delta H^{lv}, \ H^{sat \ vap}, \ S^{sat \ liq}, \ \Delta S^{lv}, \ S^{sat \ vap})
```

- Superheated Table (*P and T vs V, U, H, S*)
- Compressed Liquid Table
- After completion of chapter 3 and 6, you should be well equipped to develop thermodynamic table of a pure substance.

IAPWS

For further reading,

- The International Association for the Properties of Water and Steam
- http://www.iapws.org/
- Provide internationally accepted formulations for the properties of steam, water and selected aqueous solutions for scientific and industrial applications.
- You can get software written based on IAPWS formulations

Reference

Smith J.M., Van Ness H.C., and Abbott M. M., Introduction to Chemical Engineering Thermodynamics, 7th Edition, McGraw Hill, New York, 2001.