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Objectives

To develop fundamental property relations (FPR) of
U,H,S,G,AV,P,T from 1st and 2nd Law of
Thermodynamic.

Using FPR to derive equations for thermodynamic
properties such as H and S.

To use the concept of residual property in the
calculation of thermodynamic property.

To develop and utilize the generalized correlation for
the calculation of residual property.

To be able to use diagram and table of
thermodynamic property.
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Property Relations for Homogeneous Phases
Consider the following system,

Closed system

« Homogeneous

l.e. single phase and no change in composition!

e.g. Air No phase
. change!!

Initial conditions P, and T,
Final conditions P, and T,

1st Law (Energy Balance) for closed system,

d(nU) =90 + oW
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From definition of entropy (S), ........ see chapter 5

8Ql’ ey

d(nS)=

For reversible process the EB becomes,

d(nU) =00

reyv

+oW

d(nU) = Td(nS)— Pd(nV) (6.1)



We know that H=U+PV, now let us also define,
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A =U-TS

Helmbholtz Energy

G =H-TS

Gibbs Energy

Differentiate these properties (H, A and G),

d(nH)=d(nU)+ Pd(nV)+nVdP

substitute eqn 6.1 for dnU.,

d(nH)=Td(nS)— Pd(nV)+ Pd(nV)+ nVdP

d(nH)=Td(nS)+nVdP
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Continue,

d(nA)=d(nU)-Td(nS)-(nS)dT

substitute for dnU ,

d(nA) = Td(nS)— Pd(nV)—Td(nS)—(nS)dT
d(nA)=-Pd(nV)—(nS)dT

d(nG)=d(nH)—-Td(nS)—(nS)dT

substitute for dnH ,

d(nG)=Td(nS)+ nV)dP —Td(nS)—(nS)dT
d(nG)=(nV)dP—(nS)dT
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For n=1,
dU = TdS — PdV (6.7)
dH = TdS +VdP (6.8)
dA = —PdV — SdT (6.9)
dG = VdP — SdT (6.10)

These are called fundamental property relations (FPR).

Note: The unit for TS and PV is energy unit.

Notice that the FPR for Gibbs Energy is a function of commonly measured
variable P and T,

G = G(T,P)
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All FPRs are in the form of,

dF = MdX + NdY (6.11)
where
F=F(X)Y)

Since F is a state function, we can differentiate
F(X,Y) as follows,

dF = oF dX + or dY
X ). Y )

So let,

)y
X ). Y ).

dF = MdX + NdY
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Differentiate one more time,

oM\ _ IF
oY ) IYoxX

So,

), (5%),

N\ _ FF
dX ) ~ 9XdY

(6.12)

Eqgn 6.12 is the criterion of exactness for an exact
differential expression of Eqn 6.11.



Apply criterion of exactness to FPRs,

dU =TdS — PdV

dH = T7dS + VdP

dA=—-PdV — SdT

dG =VdP — SdT
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(6.13)
(6.14)
(6.15)

(6.16)

These (Egn 6.13-16) are known

as Maxwell’ s equations



Application of FPRs and Maxwell’ s Eqn:

Use in the derivation of the general equation for H
H=H(T,P)

d = ( ]P d + [ ]T d (a)

Energy balance,

00 + oW = dU +dEK/;/dEfv

00 — PdV =dU Note: for constant pressure process,
90 = dU + PdV dH =dU +dPV =dU +PdV+V dp~
d0 =(dH),

c,-20_(20
Podr dTl ),
So eqn (a) becomes,

dH = C,dT + (&—H) dP (b)
P ).
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From FPR, dH = TdS + VdP

differentiate wrt P at constant T,

OH (9S ) (apj

| =T = | 4| =—

\aP/T kOP)P)T Jp T
(

on =T 98 +V

&P)T L8P)T

74

From Maxwell” eqn, (%) --5)

P

JH 74
) {2 e

Substitute into (b),

dH = C,dT + {V _ T[Wj :|dP (6.20) This general eqn for enthalpy is
P

T
PV,T

in term of measured variable
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Application of FPRs and Maxwell’ s Eqn

- to derive general equation for S
S =S(T,P)

ds = 95 a’T+§ dP
or )" "\opr),

From FPR,

dH = TdS + VdP

oH A 0 oS
M]P-T[Wj;%-f[wl-cp
as) G,

or), T

From Maxwell’ s equation, (B_Vj :_[‘”j

oT oP

Substitute into (b),

dl [ JdV
B=Cr _(8ijdp T

(b)

o) 1)

(6.21)

This general egn for entropy is in
term of measured variable P,V, T
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Application of General Equation of H (Egn 6.20) and S (Eqn 6.21)
for Homogenous and Constant Composition Fluid.

-For system with ideal gas, rr-zr . v-2 « [31] &

Substitute into (6.20) and (6.21),

dH' = C¥dT + {V - T(RﬂdP = CdT + [%/']dP
P

dH* = C#dT (6.23)
s’ = C* %T - %dp (6.24)

These are similarto egn 4.2 and eqgn 5.14
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-Alternative forms for liquids

From Maxwell’ s egn and the definition of volume expansivity,

Also from 6.19,

OH 4
(8—PJ = V—T[g—T)P =(1—[3T)V (6.20)

Substitute into 6.20, dH:CPdT{V_ T[z_g :Idp (6.20)

dH = C,dT +(1- BT )VdP (6.28)

This is alternative form for liquid.
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For entropy,

A 4
)7

Substitute into egn 6.21,

is=c, () ar
P

as=C, - ra

(6.25)

(6.21)

(6.29)

This is alternative form for liquid.
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See example 6.2
e For incompressible liquid (8 = k = 0),

C,=C

vV
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Let’ s look again at general equation for enthalpy for
homogenous and constant composition system

WV
dH = C,dT + {V = T(a—T)de (6.20)

To use egn 6.20, we needs

Initial and final T & P
PVT relation or PVT data
Cp

For gas phase however, most C, are tabulated for
ideal gas only i.e. C,9 (Table C.1)

Unless we have actual C, for gases, we can’ t use
eqn 6.20 to calculate the enthalpy for real (actual)
gas!!
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How can we calculate the enthalpy of a real gas using an
ideal gas heat capacity?

Well,
a. First we calculate H9 using C,"9 .

b. Then we use PVT relation or PVT data to determine the
residual enthalpy (HF) which is the DIFFERENCE
between real enthalpy (H) and ideal gas enthalpy (H"9).

Residual Enthalpy = HR=H - H9

c. So, the real enthalpy is found by adding H” to the H9.

H = H9 + HR
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Residual Properties
Residual Property = Real Property - Ideal Gas Property
HY=H-H® S%=§-5% G"=G-G* etc.

For example, to calculate AH or H,-H, we shall use
the hypothetical path.



Note,
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AH = AH + AH, + AH,

AH = AH, + AH? + AH,
st = (42— (C8), (7~ (H, 1)

AH = —HR +<C;’§'>H (T,-T,)+HS

AH=(CE) (T,—T,)+H; —Hf (6.93)

Now we need to figure out
how to determine HR?

IS mean heat capacity and is given by equation (4.8)



To determine HR, let us start with the Gibbs Free Energy.

G=G(T,P)

divide by RT and differentiate,

dl Clo e Cal o e C o
RT | RT " RAUTITRT S R

Substitute FPR for dG,
—TS
@11 (VdP—SdT)—( . )dT:LdP— > dr-ar+ 2 g
RT RT R R RT? RT




ocw.utm.my

Let us do for residual Gibbs energy,
Gf=G-G*

divide by RT and differentiate,

(5r5HE

Apply eqn 6.37, we get

d(g;j = (V_Vig)dp— (H_Hig)dT

RT RT?

R R R
a S |2 gp
RT | RT RT*?

(6.42)
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Apply criterion of exactness.

[ R
i a(G RT)
=25 (6.43)
| AT
- a(GV )
=T &TRT (6.44)
| dpP

Rearrange egn 6.43 and integrate from
ideal gas state (P=0) to arbitrary P (actual P),

j d(GAT) —dP



ocw.utm.my ©UIM

G—R—Osz—RdP:jV_VigdP

RT * RT RT

G_R_J ZRT _RT) 1 .,

RT '\ P P JRT

GR Z—1

T [ ( - )dP (6.49)

Differentiate wrt. T at constant P,
d(%r) 7)) (o) 1(9z) . 97\ ap
(A o)

Substitute into eqn 6.44 for HR
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« We will get,
R P
o1 oz | db (6.46)
RT 3\JT ), P
e Similarly from,
st HY G"
R RT RT
We will get,
R P P
S 1] JZ L _j(z-1) & (6.48)
R \JT ), P 3 P

 Hence, as in eqn 6.46 and 6.48, we need either PVT
data or correlations for Z to solve for HX and SF~.



Enthalpy for ‘real’ gas SR ©UTM

T
note: AH® = H® — H;g = J.Cj’de

TD

H=H*+H"

T
H=H*+[CEdT + H o
° H* = H® + [ C¥dT
T,

H=HE+(CE) (T-T,)+H" (6.52)

P

Note: Here the reference state isidealgas at T, P,.
AH = H, - H, is calculated as follows,

H = H*+(C¥) (LT )+H/

H,=H*+(CE) (T,-T )+H]

P

AH = H,— H =(CE) (T,-T,)+H}-H'  (6.93)
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Similarly, entropy for ‘real’ gas

S =S%+ 8~
T
S=Sig+JC§d—T—Rln£+SR
oy 0T F,
oo\ T o P
=S¥ +(CE). 1170 - Rln;0+s (6.53)
N T P
— ! 2 2 R R
AS =(CE) In—>— Rln=2+5 -5, (6.94)

1 1

where

(ci) :R[A+[BT +[CT2+ f)zlﬂlﬂ(mn (5.17)
§ ’ ©TT 2 Int
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HR and S* by EOS

Using two-term Virial Equation
Combined Eqn 3.38, 6.49 and 6.44 will give,

RT R

T a7 (6.55) — = (6.56)

HE P[B dB] SE P dB
R R dT

* Using three-term Virial Equation
Combined Egn 3.40, 6.49 in term of p

H* B dB C 1dC)
=T 2= p| - 6.62
RT [(T dT]p (T 2dT]p} (6.62)

Later we will show a much easier to use generalized
virial-coefficient eqn.....
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e Using Generic Cubic EOS
K dno(T
H_ g | dhedd) (6.67)
RT dInT
S~ dino(T)
 —In(Z-B)+ gl 6.68
2 n(Z - f3) JinT q (6.68)
Where
. r Yo(T)
B—QE (3.53) ~~ar (3.54)
and
For € = o, For € # o,
= B I 1 ln(2+0ﬁj
Z+ef c-—¢ 1+¢&p

Note: We first have to solve for Z, using egn 3.52
for vapor and vapor-like root.
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HR and S® from Generalized Correlations

P=PP,  dP=PdP
T =TT dT =T.dT.

from

Substitute into eqn 6.46 and 6.48,

HFE oz PdP, _ 5
= _TT? A 6.83
L j[m] P, J( j o
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 The Lee/Kesler Correlation

From 7=7"+aw7

(az} [820j [82’}
- — | — + | —
or. ), \or, ), \ar, ),

Substitute into eqn 6.83 and 6.84,

S 5 (oze 9z’ |aP . \dP
H* 2}(5’20] dP z'j[az'j dP ?z‘Tr{[(a—Tr] * [TTFHT'HZ +a’Z—1)7r
RT, or, ), P oI ), I, S—R:_”’[T[fz) +ZO_1F wJ{T[ai) +Z,]d_z»
S IR PP N A
0 1 0 1
w (i) (i) o (s ()
T RT +w RT (6.85) " + » (6.86)
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Tables E5-E12 developed by Lee/Kesler give the values
for the followings,

H* = (HR)I RT
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e Generalized second-virial-coefficient

P P
Z=1+B°"—*+wB —
T, T,

Differentiate,

B3 e A (3
— | =P||—||=|+B —Z|+0P||— || = |+ B —
ar, ), \\dTI )T, dT, "\\ar. \T. dT.

&), (@) el ()7

— | =P||— || = |-= |+oP -

Jar, ), "\\dT, )\T, T’ dT T’
Substitute into eqn 6.83 and 6.84,

RT, '|\or, T or. T )| '

1
T




As BY and BT are function of T only, the terms in parenthesis

are constants, so integrate at constant T gives:

R 0 1
o P{BO—TF i +a)[B1 r 98 ﬂ (6.87)

RT T " IT.
SK 0B’ 0B
— =-P (6.88)
R "\ JT J
Where
B" =0.083— 2 41262 (3.65) B'=0.139 - 0'14722 (3.66)
T T+
dB’  0.675 (6.89) dB'  0.722 (6.90)

dTr N TrM dTr - Trs.z
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Z, H? and S” for Mixtures

Z=27"+wZ (3.57)
0 1
pe_(#t) | (H) (st (s
= + 6.85 st 5 5
RT . RT . RT (6.85) E i R) +(o(R) (6.86)
Where’ a)P = zyiwi Tpc = Zylz-;z Ppc = Zylf)cl
T _ P _ P  « Pseudo-reduced parameters
pro T prop
pc pc

Refer to Table E5-E12 for values of,
rR\Y R 1 r\Y R 1
(H*)  (H") (") (s")
RT, ° RT, " R =R
Refer to Table E1-E4 for values Z% and Z?
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TN A

Phase Equilibrium for System
with
Pure Substance

. T,P
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Two-Phase Systems

e Closed system

« Two phase in equilibrium (vapor-liquid equilibrium, VLE)
atT, P, n!, nv

For this system,

G(T,P,n',n")

onG onG onG onG
dpG)=| —— d — P dn' dn’
%) ( 8]-' )P.nl’nv/—l_( aP )T’nl,n\)/ +( &ll jT,P,nv n +(anv jT,P,nl n

For constant T, P and overall composition,

0=CG'dn' + GVdn’
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Where we define partial molar property as,

_. (onG —., (JdnG
Gl:(&nlj v :(anV)
T.Pn" T.Pn'

Since this is pure substance, the partial molar
property of liquid is actually the property of
liquid!! l.e.

G =G and G' =G’
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Note: Definition of Partial Molar
Properties in
Chapter 11

&’(nM)
on.

- ! AP, T ,n.
J

M. = (11.7)

Where M =V ,U,H,S,G etc.
M 1s a property of pure species i

M - 18 property of species i inside the mixture or solution



Continue,

Also from mole balance,

[ v t Note: Closed system

n+n =n

dn' +dn’ =//

dn' = —dn’
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Substitute, 0=Cldn' — G d

(Gl — G")dnl =0
G' =G

This is the phase equilibrium criteria (or vapor
liquid equilibrium criteria) for pure substance.

Let us check our steam table at Tsat= 100°C,

G'=H"-TS" =2676—373.15(7.3554)=—68.6 kJ / kg
G =H'-TS'=419.1-373.15(1.3069) = —68.6 kJ / kg
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Consider system A at 2 different equilibrium conditions,

In equilibrium at saturation conditions 1:
T, P, G, G

and

In equilibrium at saturation conditions 2:
T,, P,, G2, G

From equilibrium criteria,

G'=G" Eqn 1
G’ =G" Eqn 2
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Let Eqn 2 - Eqgn 1,

GlZ _Gll — GV2 _GV1

dG' = dG"
From FPR Vld sat _SldT: Vvd sat _SvdT
’ d sat B ASZV
dT AV"
dH = TdS + Vd/
But for vaporization of pure substance at constant P,
AH" =TAS" +0
Substitute,
d sat B AHIV

T = TAT Persamaan Clapeyron (6.72) or (4.11)
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The equation could also be written as follows,

din P AH"

Clapeyron Equation (6.74)

d(¥)  RAZ"
At low pressure (ideal gas), Y ﬁi and also Ul
Clapeyron eqn 6.72 becomes,
dpsat AHvap
= Clausius/Clapeyron equation
dT RT? pey 1
sat
or, P
dPsat
P — AH™ and AH" = —R dinp To solve this equation, we only

data or equation relating vapor
pressure to boiling point.,

E R d( 1 j need either vapor pressure
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Vapor Pressure (Psat) vs Boiling Point Temp (Tsat)

1. Antoine equation, B
InP“ = A-
7" +C

(6.76)

See Table B2 for the constants

. At + Bt +Ct’ + Dt°
2. Wagner equation, P = 1 (6.77)
-7

7=1-T

T

3. AIChE (1984) equation,

InP’* = A+ B

_|_ClnTsat _I_D(Tsat)E
TSClt




) YIL
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4. Also, we could use Lee and Kesler Correlations

P (T, )= P (T, )+winP!(T, ) (6.78)
Where,
InP* (T, |=5.92714- 009648 | 28862InT +0.169347T"
15.6875

inP! (T, )=15.2518-

—13.4721InT +0.43577T°

e (1,)-me(7,)
mP!(T,)

Note: This correlation was developed for non-polar liquids.
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Thermodynamic Properties for Two-Phase
Liquid/Vapor System

M=M"+x"AM"

M=V,UH,S etc.

xV 1s also known as quality, that is the
mass fraction of vapor in the system,

X' =mV/mT=nv/nT



Thermodynamic Diagrams

Show the relationship of thermodynamic variables (T, P,V, H, S)

on a graph for a particular substance.
For example:

e TS Diagram, PH Diagram, PV Diagram, HT Diagram

e HS Diagram (known as Mollier Diagram)

Usetul for analysis of thermodynamic processes as the paths

of processes are easily traced and visualized.
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Thermodynamic Tables

 Thermodynamic table enable us to read values of thermodynamic
properties accurately.

e Usually requires interpolation (as well as extrapolation).

For example:
e Ammonia Table, Freon Table, Methane Table, Propane Table
e Saturated Table
(T Vs P, \/sat liq, AVZ", \/sat vap, [Jsat liq’ AUZV, [Jsat vap’
Hsat liq, AHZV, Hsatvap - Ssat liq’ ASIV, Qsat vap)
e Superheated Table (P and Tvs V, U, H, S)
e Compressed Liquid Table

e After completion of chapter 3 and 6, you should be well equipped to
develop thermodynamic table of a pure substance.
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|APWS

For further reading,

* The International Association for the Properties of Water
and Steam

e http://www.iapws.org/

* Provide internationally accepted formulations for the
properties of steam, water and selected aqueous
solutions for scientific and industrial applications.

* You can get software written based on IAPWS
formulations
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