SKAA 1213 - Engineering Mechanics

TOPIC 1
 INTRODUCTION

Lecturers:
Rosli $\mathfrak{A n a n g}$
Dr. Mofd Yunus Isfak DR Tan Cher Siang

What is M echanics

- Study of bodies at rest or motion that are subjected to the action of force
> Rigid-body mechanics
$>$ Deformable-body mechanics
> Fluid mechanics
- Rigid body mechanics
$>$ Statics - equilibrium of bodies either at rest or moving at a constant velocity
> Dynamics - bodies in accelerated motion

Idealisations

help to simplify application of the theory.
Particle - has mass but the size can be neglected. The geometry is not involved in the analysis.

Rigid Body - consider as a combination of large number of particles in which all the particles remained at a fixed distance from one another before and after applying a load.

Concentrated Force - represents the effect of a loading which is assumed to act at a point on a body.

Scalar and Vectors Quantities

Most physical quantities in mechanics can be expressed mathematically by means of scalar and vector quantities.

- Scalar - quantity that has magnitude but not direction.
eg. Mass (m), volume (V), length (l)
- Vector - quantity that has both a magnitude and a direction.
eg. Force (F), moment (M), position (r)
A vector is represented graphically by an arrow;

Magnitude - length
Direction - angle
Sense - arrow head

Force is a vector quantity - rules of vector algebra appla

Newton's Law of Motion

Rigid body mechanics is formulated on the basis of Newton's three laws of motion.

First Law:. A particle originally at rest, or moving in a straight line with constant velocity, will remain in this state provided the particle is not subjected to an unbalanced force

Second Law: A particle acted upon by an unbalanced force \mathbf{F} experiences an acceleration a that has the same direction as the force and a magnitude that is directly proportional to the force.

Equilibrium

Accelerated motion

$$
\mathbf{F}=\mathrm{ma}
$$

Third Law: the mutual force of action and reaction between two particles are equal, opposite, and collinear.

Force of B on

