

SKN3022 PROCESS INSTRUMENTATION CHAPTER III

INSTRUMENTATION CHARACTERISTICS

Dr Saharudin Haron

Hanizam Sulaiman

innovative • entrepreneurial • global

ocw.utm.my

INSTRUMENTATION CHARACTERISTICS

- Shows the performance of instruments to be used.
- Divided into two categories: static and dynamic characteristics.
- Static characteristics refer to the comparison between steady output and ideal output when the input is constant.
- Dynamic characteristics refer to the comparison between instrument output and ideal output when the input changes.

- 1. ACCURACY
 - Accuracy is the ability of an instrument to show the exact reading.
 - Always related to the extent of the wrong reading/non accuracy.
 - Normally shown in percentage of error which of the full scale reading percentage.

Example :

A pressure gauge with a range between 0-1 bar with an accuracy of \pm 5% fs (full-scale) has a maximum error of:

<u>5</u> x 1 bar = ± 0.05 bar 100

Notes: It is essential to choose an equipment which has a suitable operating range.

Example :

A pressure gauge with a range between 0 - 10 bar is found to have an error of ± 0.15 bar when calibrated by the manufacturer.

Calculate :

- a. The error percentage of the gauge.
- b. The error percentage when the reading obtained is 2.0 bar.

Answer : a. Error Percentage = ± 0.15 bar x 100 = $\pm 1.5\%$ 10.0 bar b. Error Percentage = ± 0.15 bar x 100 = $\pm 7.5\%$ 2.0 bar

- The gauge is not suitable for use for low range reading.
- Alternative : use gauge with a suitable range.

Example :

Two pressure gauges (pressure gauge A and B) have a full scale accuracy of \pm 5%. Sensor A has a range of 0-1 bar and Sensor B 0-10 bar. Which gauge is more suitable to be used if the reading is 0.9 bar?

Answer :

Sensor A :

Equipment accuracy (in bar) = ± 5 x 1 bar = ± 0.05

100

Equipment accuracy

@ 0.9 bar (in %) = ± <u>0.05</u> bar x 100 = ± 5.6% 0.9 bar

Sensor B:

Equipment accuracy (in bar) = $\pm 5 \times 10$ bar = ± 0.5 bar

100

Equipment accuracy

```
@ 0.9 bar ( in %) = \pm 0.5 \text{ bar} \ge 100 = \pm 55\%
0.9 bar
```

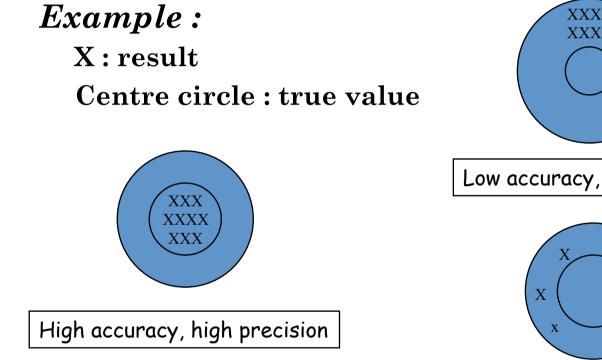
Conclusion:

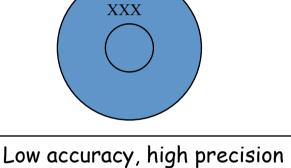
Sensor A is more suitable to use at a reading of 0.9 bar because the error percentage (\pm 5.6%) is smaller compared to the percentage error of Sensor B (\pm 55%).

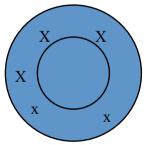
Example :

A temperature sensor has a span of 20-250°C. A measurement results in a value of 55°C for the temperature. Specify the error if the accuracy is (a) $\pm 0.5\%$ FS, (b) $\pm 0.75\%$ span, and (c) $\pm 0.8\%$ of reading. What is the possible temperature in each case.

Solution


- (a) Error = $(\pm 0.005)(250^{\circ}C) = \pm 1.25^{\circ}C$. Thus, the actual temperature is in the range of 53.75 to 56.25°C.
- (b) Error = $(\pm 0.0075)(250-20)^{\circ}C = \pm 1.725^{\circ}C$. Thus, the actual temperature is in the range of 53.275 to 56.725^{\circ}C.
- (c) Error = $(\pm 0.008)(55^{\circ}C) = \pm 0.44^{\circ}C$. Thus, the temperature is in the range of 54.56 to 55.44°C.


2. PRECISION


- An equipment which is precise is not necessarily accurate.
- Defined as the capability of an instrument to show the same reading when used each time (reproducibility of the instrument).

Comparison of accuracy and precision

Low accuracy, low precision

3. TOLERANCE

- Closely related to accuracy of an equipment where the accuracy of an equipment is sometimes referred to in the form of tolerance limit.
- Defined as the maximum error expected in an instrument.
- Explains the maximum deviation of an output component at a certain value.

4. RANGE OF SPAN

- Defined as the range of reading between minimum value and maximum value for the measurement of an instrument.
- Has a positive value e.g..:

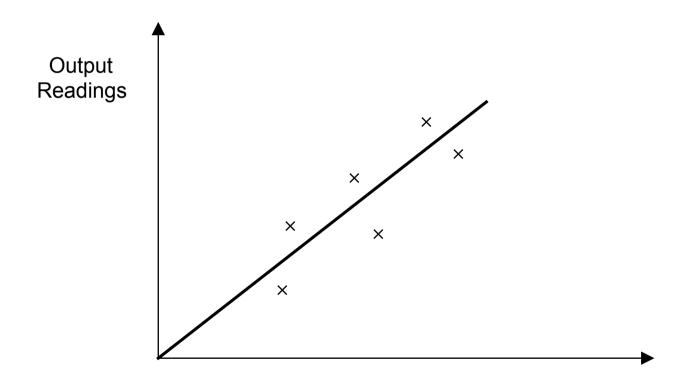
The range of span of an instrument which has a reading range of –100°C to 100 °C is 200 °C.

5. BIAS

- Constant error which occurs during the measurement of an instrument.
- This error is usually rectified or corrected through calibration.

Example :

A weighing scale always gives a bias reading. This equipment always gives a reading of 1 kg even without any load applied. Therefore, if A with a weight of 70 kg weighs himself, the given reading would be 71 kg. This would indicate that there is a constant bias of 1 kg to be corrected.



6. LINEARITY

- Maximum deviation from linear relation between input and output.
- The output of an instrument has to be linearly proportionate to the measured quantity.
- Normally shown in the form of full scale percentage (% fs).
- The graph shows the output reading of an instrument when a few input readings are entered.
- *Linearity* = maximum deviation from the reading of x and the straight line.

Linearity

Measured Quantity

7. SENSITIVITY

 Defined as the ratio of change in output towards the change in input in steady state.

• Sensitivity (K) =
$$\Delta \theta o$$

 $\Delta \theta i$

 $\Delta \theta \circ$: change in output; $\Delta \theta i$: change in input

Example 1:

The resistance value of a Platinum Resistance Thermometer changes when the temperature increases. Therefore, the unit of sensitivity for this equipment is Ohm/°C.

Example 2:

Pressure sensor A with a value of 2 bar caused a deviation of 10 degrees. Therefore, the sensitivity of the equipment is 5 degrees/bar.

• Sensitivity of the whole system is (k) = $k_1 x k_2 x k_3 x ... x k_n$

$$\theta_{i} \longrightarrow k_{1} \longrightarrow k_{2} \longrightarrow k_{3} \longrightarrow \theta_{0}$$

Example:

Consider a measuring system consisting of a transducer, amplifier and a recorder, with sensitivity for each equipment given below:

Transducer sensitivity	0.2 mV/°C
Amplifier gain	2.0 V/mV
Recorder sensitivity	5.0 mm/V

Therefore,

Sensitivity of the whole system:

(k) =
$$k_1 x k_2 x k_3$$

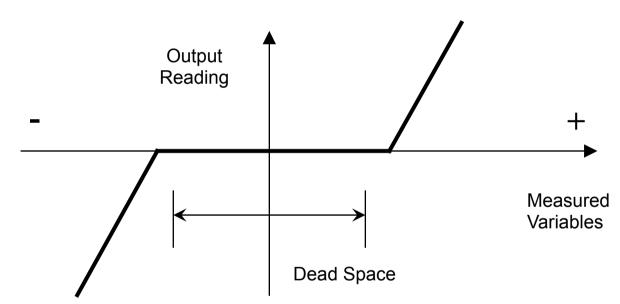
k = 0.2 mV x 2.0 V x 5.0 mm
°C mV V
k = 2.0 mm/°C

Example :

The output of a platinum resistance thermometer (RTD) is as follows:

Input(°C)	Output(Ohm)
0	0
100	200
200	400
300	600
400	800

Calculate the sensitivity of the equipment.


Answer :

Draw an input versus output graph. From that graph, the sensitivity is the slope of the graph.

$$K = \underline{\Delta R} \qquad \text{graph slope} = \underline{(400-200)} \text{ Ohm} = 2 \text{ Ohm/°C} \\ \underline{\Delta T} \qquad (200-100) \text{ °C}$$

8. DEAD SPACE / DEAD BAND

• Defined as the range of input reading when there is no change in output (unresponsive system).

9. **RESOLUTION**

- The smallest change in input reading that can be traced accurately.
- Given in the form '% of full scale (% fs)'.
- Available in digital instrumentation.

Example:

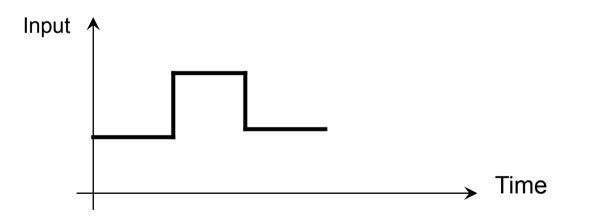
A force sensor measures a range of 0 to 150N with a resolution of 0.1% FS. Find the smallest change in force that can be measured.

Solution:

Because the resolution is 0.1% FS, we have a resolution of (0.001)(150N) = 0.15N, which is the smallest measurable change in force.

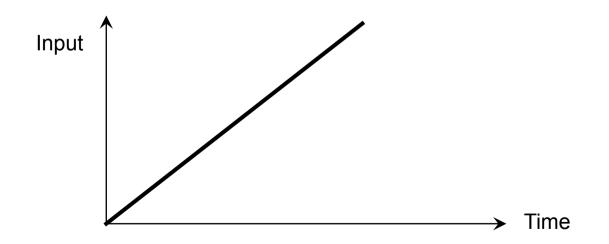
10. THRESHOLD

- When the reading of an input is increased from zero, the input reading will reach a certain value before change occurs in the output.
- The minimum limit of the input reading is 'threshold'.

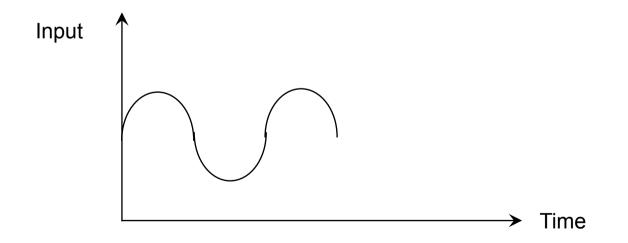


- Explains the behaviour system of instruments system when the input signal is changed.
- Depends on a few standard input signals such as 'step input', 'ramp input' and 'sine-wave input'.

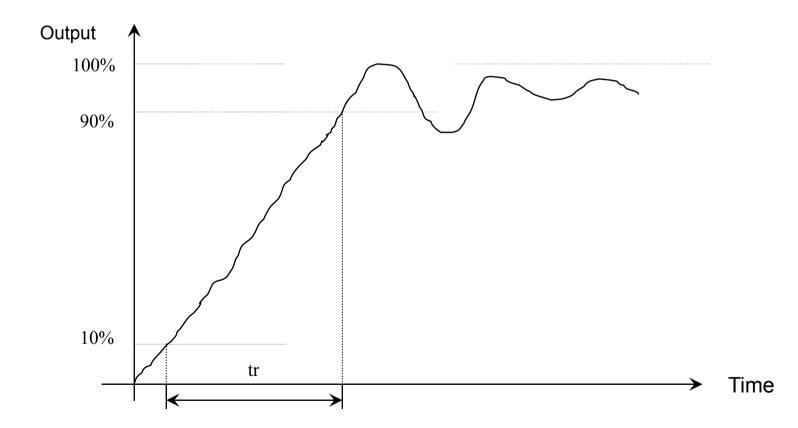
Step Input


- Sudden change in input signal from steady state.
- The output signal for this kind of input is known as 'transient response'.

Ramp Input


- The signal changes linearly.
- The output signal for ramp input is 'ramp response'.

Sine-wave Input


- The signal is harmonic.
- The output signal is 'frequency response'.

EXAMPLE OF DYNAMIC CHARACTERISTICS

Response from a 2nd order instrument:

EXAMPLE OF DYNAMIC CHARACTERISTICS

Response from a 2nd order instrument:

- 1. <u>Rise Time (tr)</u>
- Time taken for the output to rise from 10% to 90 % of the steady state value.
- 2. <u>Settling time (ts)</u>
- Time taken for output to reach a steady state value.

Problems

- 1. A sensor resistance changes linearly from 100 to 180Ω as temperature changes from 20 to 120° C. Find a linear equation relating resistance and temperature.
- 2. Suppose the temperature range 20 to 120°C is linearly converted to the standard current range of 4 to 20 mA. What current will result from 66°C? What temperature does 6.5 mA represent?