

Well Test Interpretation SKM4323

RESERVOIR BOUNDARIES

Azmi Mohd Arshad

Department of Petroleum Engineering

WEEK 09

CONSTANT PRESSURE BOUNDARY

Description

- A constant pressure boundary effect can be seen during a well test in several cases:
 - When the compressible zone reaches a gas cap laterally;
 - When the compressible zone reaches an aquifer with the mobility of the water much greater than that of the oil

The Method of Images

- A constant pressure boundary is obtained analytically using the method of images.
- The image well is symmetrical to the tested well in relation to the boundary.
 - It has a flow rate opposite that of the tested well.

The Method of Images.../2

The Method of Images.../3

 Applying the image method, the pressure at the well is written:

$$p_{\rm D} = p_{\rm D} (t_{\rm D}, r_{\rm D} = 1, S) - p_{\rm D} (t_{\rm D}, 2r_{\rm D})$$

(10.1)

Pressure variation due to the well

Pressure variation due to the image well

Distance to The Boundary

- Two methods can be used to determine the distance to the boundary:
 - The intersection of the semi-log straight line and the constant pressure straight line that was reach at the end of the test.
 - The radius of investigation at the time when the compressive zone reaches the boundary.

Distance to The Boundary.../2

Distance to The Boundary.../3

- Intersection of the two straight line:
 - The expression of the distance is identical to that obtained for a fault:

$$d = 0.012 \sqrt{\frac{kt_i}{\phi \mu c_i}} \qquad \text{(in practical US units)}$$
 (10.7)

Distance to The Boundary.../4

- Radius of investigation:
 - The distance from the well to the boundary can be determined by the time t_r when the measurement points leave the semi-log straight line:

$$d = 0.032 \sqrt{\frac{kt_r}{\phi \mu c_t}}$$
 (in practical US units) (10.8)

Type Curves: The Derivative

- The presence of a constant pressure boundary is characterized by a pressure stabilization.
- A pressure derivative going to zero and appearing as a sharp decrease of the log-log representative corresponds to this pressure stabilization.

Type Curves: The Derivative.../2

Example 13

(In-class workshop)

- Constant pressure boundary-

CLOSED RESERVOIR

Description

- If the reservoir is limited by no-flow boundaries, two cases can be distinguished when the compressible zones reaches the limits:
 - The well is producing: when the no-flow boundaries are reached, the flow regimes becomes pseudosteady-state.
 - The well is shut-in: when the no-flow boundaries are reached, the pressure stabilizes at a value called average pressure in the whole area defined by the no-flow boundaries.

- When all the no-flow boundaries have been reached, the flow regime becomes pseudosteadystate regime.
- The no-flow boundaries define **the drainage area** of the well.

$$A = \frac{0.234qB}{\phi c_t hm^*}$$
Positive value

• The value of P_0 is used to determine the shape factor, C_{Δ} .

From drawdown or buildup, positive value

- Table 11.1 can be used to determine the t_{DA} corresponding to the end of the transient flow and to the beginning of pseudosteady-state flow for a given reservoir-well configuration:
 - The fourth column of the table indicates the exact beginning of the pseudosteady-state flow;
 - The fifth column shows the beginning of the pseudosteady-state with less than 1% error;
 - The sixth column gives the end of the transient flow with less than 1% error.

Table 11.1

In bounded reservoirs	CA	in C _A	1/2 in <u>(2.2458)</u> C _A	Exact for t _{DA} >	Less than 1% error for t _{DA} >	Use infinite system solution with less than 1% error for t _{DA} <
\odot	31.62	3.4538	- 1.3224	0.1	0.06	0.10
\odot	31.6	3.4532	- 1.3220	0.1	0.06	0.10
\triangle	27.6	3.378	- 1.2544	0.2	0.07	0.09
600	27.1	3.2995	- 1.2452	0.2	0.07	0.09
1/3	21.9	3.0865	- 1.1387	0.4	0.12	0.08

3 4	0.098	- 2.3227	+ 1.5659	0.9	0.60	0.015
	30.8828	3.4302	-1.3106	0.1	0.05	0.09
	12.9851	2.5638	0.8774	0.7	0.25	0.03
	4.5132	1.5070	- 0.3490	0.6	0.30	0.025
	3.3351	1.2045	-0.1977	0.7	0.25	0.01

• 1	21.8369	3.0836	-1.1373	0.3	0.15	0.025
1	10.8374	2.3830	-0.7870	0.4	0.15	0.025
1	4.5141	1.5072	- 0.3491	1.5	0.50	0.06
1	2.0769	0.7309	+ 0.0391	1.7	0.50	0.02
1 2	3.1573	1.1497	-0.1703	0.4	0.15	0.005

1	0.5813	-0.5425	+ 0.6758	2.0	0.60	0.02
1	0.1109	- 2.1991	+ 1.5041	3.0	0.60	0.005
• 1	5.3790	1.6825	- 0.4367	0.8	0.30	0.01
1	2.6896	0.9894	- 0.0902	0.8	0.30	0.01
1	0.2318	- 1.4619	+ 1.1355	4.0	2.00	0.03
1	0.1155	- 2.1585	+ 1.4838	7.0	2.00	0.01
6	2.3606	0.8589	- 0.0249	1.0	0.40	0.025

in vertically fractured reservoirs	s	us	e (x _e /x _f) ² ins	tead of A/r _w	for fractured	d systems
$1 \begin{array}{ c c }\hline 0.1 \\ \hline + \\ \hline 1 \end{array} = x_{p}/x_{p}$	2.6541	0.9761	- 0.0835	0.175	0.08	inutilisable
1 0.2	2.0348	0.7104	+ 0.0493	0.175	0.09	inutilisable
1 0.3	1.9986	0.6924	+ 0.0583	0.175	0.09	inutilisable
1 0.5	1.6620	0.5080	+ 0.1505	0.175	0.09	inutilisable
1 0.7	1.3127	0.2721	+ 0.2685	0.175	0.09	inutilisable
1 1.0	0.7887	-0.2374	+ 0.5232	0.175	0.09	inutilisable

in reservoirs with water drive						
	19.1	2.95	- 1.07	-	-	-
in reservoirs of unkr production charac	nown cter					
	25.0	3.22	- 1.20	-	-	-

- Since pressure varies linearly versus time during the pseudosteady-state flow, this flow is characterized on the pressure derivative by a straight line with a slope of 1 on a log-log plot.
- The shape of the transition between the transient regime and the pseudosteady-state regime depends on the shape of the drainage area on the position of the well in the area.
 - The shape of the transition is used to characterize the reservoir well configuration.

- Figures below shows a number of typical configurations and how they are characterized on the pressure derivative plot.
- It shows the boundary during a drawdown, but also during buildup (broken line).

 When the compressible zone reaches real no-flow physical boundaries during buildup, the pressure in the drainage area becomes uniform and constant – average pressure of the drainage area.

 A derivative going to zero corresponds to reaching the average pressure. It corresponds to a steep decrease of the derivative on a log-log plot.

Comparison with a constant pressure boundary.

 Calculating the average pressure using MBH (Mathews, Brons, Hazebroek) method:

Note: P* must be determined on the first semi-log straight line that corresponds to the infinite acting period

1. Calculate t_{pDA}:

$$t_{pDA} = \frac{0.000264 \, kt_p}{\phi \, \mu \, c_t \, A}$$

- 2. Choose the curve corresponding to the reservoir-well configuration of the test (Figure 11.8 1.11).
- 3. Use the chart to determine:

$$P_{\text{DMBH}} = \frac{2.303 \left(p^* - \overline{p}\right)}{m}$$

4. Calculate the average pressure.

Fig. 11.8

Fig. 11.9

 $p_{DMBH} = 2.303 (p^* - \bar{p})/m$

Fig. 11.10

Dimensionless production time, $\rm t_{pDA}$

Fig. 11.11

Productivity Index

- The productivity index of a well is the ratio between:
 - The well flow rate;
 - The difference between the average pressure of the drainage area and the bottomhole pressure:

$$PI = \frac{q}{p - p_{wf}}$$
 (12.1)

Productivity Index.../2

 Productivity index during the infinite-acting period can be calculated by:

$$PI = \frac{kh}{162.6B\mu \left(\log t + \log \frac{k}{\phi \mu c_t r_w^2} - 3.23 + 0.87S\right)}$$
 (12.2)

Productivity Index.../3

 Productivity index during the pseudosteady-state flow can be calculated by:

$$PI = \frac{kh}{162.6B\mu \left(\log\frac{A}{r_w^2} + \log\frac{2.2458}{C_A} + 0.87S\right)}$$
 (12.6)

Example 14

(In-class workshop)

- Closed reservoir

References

- 1. Bourdarot, Gilles: Well Testing: Interpretation Methods, Éditions Technip, 1998.
- 2. Internet.

