Small and Decentralized Water System

Lecture 7: Modular Units and Financing: The Case Sewerage Facilities of Malaysia

Prof. Ir. Dr. Zaini Ujang

zaini@utm.my <a>http://www.cheme.utm.my/staff/zaini

innovative • entrepreneurial • global

ocw.utm.my

Presentation menu

- **<u>PART 1</u>**: Intro, Malaysia in brief
- **<u>PART 2</u>**: Evolution of environmental management
- **<u>PART 3</u>**: Wastewater management
 - Pre 1974
 - Post 1974
 - Framework 1993
 - Framework 2006
- <a>PART 4: Socio-economic considerations
- PART 5: Issues

Malaysia in Southeast Asia region

Looks like US flag!

Malaysia in brief

Socio-enviro-economic outlook

- **Population**: 25+ million
- Race: Multiracial country (Malay, Chinese, Indian)
- **Religion**: Multi-religions (Muslim, Buddhist, Hindu, Christian etc.)
- Land area: Slightly smaller than the size of the UK
- **Economy**: Processed products (petrochemicals, electronics, specialty chemicals, wood-products, services), tourism, commodity (palm oil, rubber, wood), services, petroleum
- Income per capita: USD5000
- Landscape: More than 40% forest, 40% plantation
- International Environmental Performance Index 2006: Malaysia ranked 9 after NZ, Sweden, Finland, Republic Czech, UK, Austria, Denmark and Canada (Japan: 14, Switzerland:16, Germany: 22, Taiwan: 24, Holland:27, USA: 28, Indonesia:79 and China:94).

Books I have co-authored in 2004, 2005 (IWA Publishing, London)

Wastewater Treatment Design Advisor (WASDA)[®]

- Developed by UTM
- Industrial Design (2003)
- Field tested
- Used by public & private agencies
- Award winning innovation

WASDA

Wastewater Treatment Plant DesignAdvisor Advisor

This is a stand-alone expert system software. WASDA, developed by the Institute of Environmental and Water Resource Management, IEWRM, University Technology Malaysia is designed to assist an engineer and engineering student to design a biological wastewater treatment plant.

魚

Log In

Major issues in Malaysia (and other developing countries)

 \rightarrow

- Providing wastewater management facilities
- Financial framework:
 - High income group \rightarrow \rightarrow
 - Medium income group
 - Poor group
- Environmental protection
 - Sources of water supply
- Operable and maintainable
- Land requirements
- Promotion of local enterprise
- **Eco-tourism**

- Full cost recovery
 - Full cost recovery
- Subsidy

Evolution and drivers in wastewater management principles, Malaysia

Period	Core principles	Agency / regulator
Pre1974	Public health protection	Department of Health
Post 1974	Pollution control	Local governments
(Sewaye)	Dellution control	Department of Environment
(industrial wastewater)	Pollution control Polluter pays	Department of Environment
Post 1993 (sewage)	Decentralized and modular	Department of Sewerage Services
	Environmental control	
Post 2006 (sewage)	Environmental control Eco-tourism	National Water Services Commission as regulator
	Private financing initiatives	Water Asset Management Company as asset owner
		Water companies as operator

Evolution of wastewater management principles in Malaysia

Period	System / Initiatives	Agency	Financing
Pre1974	Individual septic tanks, latrines, VIPs	Department of Health	Individual owners
Post 1974 (sewage)	Small modular systems: WSP, IT	Local governments	Private developers
Post 1974 (industrial wastewater)	Small modular systems: WSP, Biofilm, activated sludge etc	Department of Environment	Industrial premise owners
Post 1993 (sewage)	Small and medium- sized systems	Department of Sewerage Services	Private developers & Federal grants
Post 2006 (sewage)	Small, medium and big-sized systems	National Water Services Commission as regulator	Private developers and Federal grants
		Water Asset Management Comp.	Capital market

Why an ideal system does not work in developing countries

- The regulatory requirement is too good and perfect (e.g. BOD 10 mg/l for discharge standards)
- The system has no local inputs (e.g. trained engineers and research facilities)
- The system has no implementers (e.g. able politicians, trained engineers and skilful operators)
- The system has no legal back up (e.g. acts, legislation)
- The system has a poor financial framework (CAPEX, OPEX)
- The system is efficiently corrupted (political influence, etc.)

Comparison of water charges and other utilities in Malaysia, 2001

Services	Annual per household, €
Water supply	100
Sewerage services	20
Cell phone	400
Fixed-line phone	100
Solid waste	50
Electricity	180

GDP per cap = € 2,942

What strategy? Why?

- Providing the services to the people who are able and willing to pay the CAPEX and OPEX
- Providing the services to the people who are not able to pay both CAPEX and OPEX (the poor)
- Providing the services to the people who were not able to pay CAPEX, but now able and willing to pay both CAPEX and OPEX (improved socio-economic conditions)
- Providing the services to the people who were able to pay for the basic CAPEX, but now refused to upgrade the facilities to a better system
- Providing the services to people who are not willing to pay OPEX, but able to pay on-site CAPEX facilities

Types of sewerage services & solutions

Groups	CAPEX	OPEX	Solutions
Rich, urban	OK	OK	Full recovery
Rich, rural	No	OK	Partly subsidised, decentralised system
Poor, urban	No	OK	Subsidy, centralised or decentralised system
Poor, urban	No	No	Subsidy, decentralised system
Poor, rural	No	No	Subsidy, on-site system
Poor, rural	No	OK	Subsidy, decentralised system
Medium, urban	50/50	OK	Partly subsidised
Rich, medium	Upgrade	OK	Partly subsidised
Poor	Upgrade	OK	Fully subsidised
Poor	Upgrade	No	Fully subsidised

Current solutions in developing countries (including Malaysia)

- Individual on-site hanging toilets (without treatment)
- Low cost individual on-site septic tanks
- Low cost communal on-site septic tanks
- Household-centered low-cost sewerage systems
- Decentralized and small mechanical sewerage systems
- Conventional centralized mechanical sewerage systems

Pre 1974

Low cost individual toilets, septic tanks

Pit Latrine

Enclosure Over Water

Bucket System

Low cost community septic tanks

menga ir ke dalam longkar g, anda adalah seorang pelanggan perkhidmatan tangki septik.

Low cost community septic tanks

Household-centered low-cost sewerage systems

Figure 7.40: DO profiles in the depths 10 cm and 70 cm. The dotted line indicates an observed flow channel through the pond. Data for the profiles were collected the 22^{nd} of November. Note that the intervals of DO are not the same for the two depths.

Decentralized and small mechanical sewerage systems

Aerated Lagoon

Activated sludge plant

Privatization of sewerage services

- Since 1993 where almost all Local Authorities surrendered their sewage plants to <u>IWK</u>, a national sewage company
- Mainly on operation and maintenance
- Capital expenditure is paid by house owner and Federal Government
- Separate bill from water supplies
- Based on type of houses
- Individual septic tanks to be discharged every 2 year and paid accordingly by house owner to IWK

Sewerage planning in Malaysia

Phase/Year	Category A (48 major towns)		Category B (96 small towns)		
	Connected	Septic tanks	Connected	Septic tanks	
Phase 1(1997)	-	-	-	-	
Phase 2(2002)	64%	29%	16%	51%	
Phase 3(2007)	76%	19%	18%	50%	
Phase 4(2012)	83%	14%	19%	50%	
Phase 5(2017)	84%	13%	24%	47%	
Phase 6(2022)	84%	16%	30%	70%	

Objectives

Small, modular and decentralized wastewater treatment plants

- To protect public health
- To protect receiving water environment from degradation or contamination
- To reduce costs of treatment by retaining water and solids near their point of origin

Wastewater Management Systems and Options

Systems	Options
Individual on-site system	-Septic tanks
PE: 1-10	-VIP
Communal on-site system	-Septic tanks
PE10-100	-Imhoff tanks
Household-centered low-cost sewerage	-Waste stabilization ponds
systems	-Wetlands, Land treatment
PE100-5,000	-Sea outfall
Decentralized and small mechanical	-Package plants: activated sludge
sewerage systems	-Packaged plants: biofilm system
PE5,000-50,000	-Membrane bioreactor
Large size, mechanical centralized system	-Conventional activated sludge
PE50,000-1,000,000	

Wastewater Management Systems and Options

Systems	Options	Target Populations
Individual on-site system	-Septic tanks	-Rural (poor, medium, rich)
PE: 1-10	-VIP	-Urban poor
Communal on-site system	-Septic tanks	-Urban poor
PE10-100	-Imhoff tanks	-Government subsidized projects
Household-centered low-	-Waste stabilization ponds	-Urban poor
cost sewerage systems	-Wetlands, Land treatment	-Middle class urban
PE100-5,000	-Sea outfall	
Decentralized and small	-Package plants: activated sludge	-Flats & subsidized projects
mechanical sewerage	-Packaged plants: biofilm system	-Middle class
systems	-Package plants: Hybrid system	-Resort areas
PE5,000-50,000	-Membrane bioreactor	-Business areas
	-New innovations?	-Properly planned housing areas
Large size, mechanical	-Conventional activated sludge	-Clusters of planned housing areas
centralized system		-Business areas, middle and upper
PE50,000-1,000,000		class urban

Interim Nationa	River V	Vater Qu	ality St	andarc	l for Ma	laysia
Parameters (units)	Classes					
	I	IIA	IIB	111	IV	V
Ammoniacal Nitrogen (mg/l)	0.1	0.3	0.3	0.9	2.7	>2.7
BOD5	1	3	3	6	12	>12
COD (mg/l)	10	25	25	50	100	>100
DO (mg/l)	7	5-7	5-7	3-5	<3	<1
рН	6.5-8.5	6-9	6-9	5-9	5-9	-
Colour (TCU)	15	150	150	-	-	-
Elect. Cond.# (mmhos/cm)	1,000	1,000	-	-	6,000	-
Floatables	Ν	N	Ν	-	-	-
Odour	Ν	N	N	-	-	

Interim National River Water Quality Standard for Malaysia						
Parameters (units)	Classes					
	I	IIA	IIB	III	IV	V
Salinity# ()	0.5	1	-	-	2	
Taste	Ν	Ν	Ν	-	-	
Total Diss. Solid# (mg/l)	500	1,000	-	-	4,000	
Total SS (mg/l)	25	50	50	150	300	>300
Temperature (°c)	-	Normal	-	Normal	-	-
		±2		±2		
Turbidity (NTU)	5	50	50	-	-	-
F.Colif. (counts/100 ml)	10	100	400	5,000	5,000	-
Tot. Colif. (counts/100	100	5,000	5,000	(20,000	(20,000	

ml)

River basin water quality trends in Malaysia (DOE, 2002)

Number of water pollution sources by sector to Malaysian rivers (DOE, 2005)

- Sewage plants (>8000)
- Manufacturing industries (7,086)
- Pig farming (909)
- Agro-based industry (472)

Number of sewage treatment plants by types (Total number >8000: DOE 2006)

Waste stabilization ponds	>600
Various types of activated sludge plants	>500
Trickling filters	>1000
Rotating biological contactors	>100
Imhoff tanks	>1000
Communal septic tanks	>1000
Other systems	>1000

Socio-economic consideration for development of sewerage services

5 categories:

- Rural community (poor and rich)
- Poor peri-urban community
- Rich peri-urban community
- Poor urban community
- Rich urban community

Socio-economic consideration for development of sewerage services

Very much related to urban planning & housing types

Category 1 and 2:

Sewage management in rural and peri-urban poor community

Category 3, 4, 5:

Institutional, planned-residential, peri-urban & urban Waste Stabilization Ponds (UTM Skudai)

Category 3, 4, 5:

Institutional, planned-residential, peri-urban, urban Rotating BioContactors

Category 3, 4, 5:

Institutional, planned-residential, peri-urban, urban E.g. Activated sludge systems

Small and Decentralized WWTP

Criteria, Scenario, Advantages, Disadvantages

- Small in size: PE 5-20 k
- Based on residential and commercial areas
- Numerous more than 8000
- Developed by housing developers
- Capital cost is included in the cost of the houses
- WSP, EA, IDEA, SBR, RBC
- Hardly meeting Standard A

Rural population in Malaysia

Land owned by individuals

Houses built based on individual investment

Water supply pipeline is provided & subsidised by Government

Road & electricity are provided & subsidised by Government

Septic tanks are paid by individual owners

Desludging is done by IWK, paid by owners of houses

Peri urban population in Malaysia

Land owned by developers

Houses built based on developers

 Water supply pipeline, road, schools & electricity are provided developers & subsidised by Government
 Sewage plants are paid by individual owners, and operate by IWK
 Upgrading of sewage

plants paid by Government

Peri urban population in Malaysia

Peri urban population in Malaysia

Low-cost houses are developed by developers; land is free from Government; facilities are cross-subsidised by other type of houses; price set by Government

 Water supply pipeline, road, schools & electricity are provided developers & subsidised by Government
 Sewage plant is built by developer, paid by individual owners, and operate by IWK

Peri urban & urban population in Malaysia

Numerous sewage plants in certain areas
Difficult to maintain
Sustainability??
Upgrading schemes are subsidised by Government

Sewage Treatment Plants in Johor Bahru, Malaysia

43

Wastewater Treatment Plants in UTM Campus, JB

Issues

- Operating and maintenance cost
- Upgrading old modular plants
- Upgrading without subsidy?
- Options for upgrading schemes
- Higher compliance, higher quality

Issues

Management Issues Cost for small and decentralized systems

Design Population / PE / Flowrate

Upgrading the modular plants to centralized, regionalized plant

Upgrading modular plants to centralized and combined plants

Centralized plant and <u>abolished</u> decentralized, modular plants

New innovation using granular sludge

51

Why aerobic granular sludge reactor?

- Straightforward (no return sludge, less sludge handling)
- Small area requirement
- Simultaneous N,P and COD removal in one reactor
- High-speed unit process
- More efficient treatment system

Thank You!

Terima kasih Tak!

