OPENCOURSEWARE

PROGRAMMING LANGUAGE 2 (SPM 3112)

ARRAYS

NOOR AZEAN ATAN
MULTIMEDIA EDUCATIONAL DEPARTMENT
UNIVERSITI TEKNOLOGI MALAYSIA

ocw.utm.my

Array Definition

Array Declaration

Array Bound & Option Base
Dynamic Array

Array Initialisation
Assessing an array
Two-dimensional array

©UIM

Topics

ocw.utm.my @H ™

1 ERTTEN BeaTE

Introduction to Arrays

e When we work with more than one item, we will declare
more than one variable for each item.

e For example:

* Dim namel, name2, name3 As String
- namel="Ali"
- name2=“Tan”
- name3=“Samy”

Problem:
e Difficult to process complex data
To overcome:

e We can use array to represent these value together under a
single name.

For example: Dim name(3) As String

ocw.utm.my @ UTM

Array Definition

e By definition, array = a list of variables,

- all with the same data type and name.

* Allows you to refer to these related values 2 same name with
an index or subscript.

* |ndex =2 an integer number that identifies array element’s
position.

asName /(1) “Jane”
(2) “Pete”
(3) ”Lucy"
Arra
Y (4) “Dave”
name Array (5) “lan”
index

ocw.utm.my ©UIM

Array Declaration

The general format to declare an array as follow:
Dim arrayName(bounds) As dataType

We use the standard keywords used to declare variables:

Dim - at module, form or procedure level
Global - at module level
Static - at procedure level

We need to say what the size of the array is when we declare it

Dim aiCountersSl4) As Integer
Dim asNames(5) As String

Static acTicketPrices(5) As Double
Global gafMeasurements(99) As Single

An array variable can be declared in a code module, a form, or a
procedure

ocwutm.my ©UIM

Why use arrays?

To store & process LISTS or TABLES of data
To provide easy access via loops

To allow processing of groups of data, where the groups must
be “remembered”

ocwutm.my ©UIM

Array Bound & Option Base

The bounds are the ‘size’ of an array

Arrays have a lower address or lower bound, and an upper
address or upper bound

Option Base can be set to eitherOor 1
- Option Base 0 ‘sets the lower bound to O
- Option Base 1 ‘sets the lower bound to 1

Dim asName(5) As String

Option Base 0 ——asName |0 (/1| 2|/ 3|/ 4

OptionBasel —asName |12 (34| 5

ccw.utm.my ©UIM

Array Bound & Option Base

declare how many elements we want in our array = VB will
set them up using the Option Base setting:

Dim asName(5) As String

Option Basel ——asName | 1| 2| 3| 4| 5

state explicitly the lower and upper bounds that we want for
the array

Dim asName(5 To 9) As String

asName | 5| 6| 7| 8! 9

ocw.utm.my ©UIM

Array Bound & Option Base

DIM statement with no lower bound is assumed
to start at zero

Dim sTotal(24) as Single
SAME AS

Dim sTotal(0 to 24) as Single

ocwutm.my ©UIM

Clearing Array

 To clear a complete array you can use the Erase
command:

Erase asNames

e This resets all fields to their ‘null’ values

ocw.utm.my ©UIM

Dynamic Array

e Array size is allocated on demand
* We can use ReDim statement to resize array.

e ReDim cannot be used to change datatype, the number of
dimension and new initialisation value.

 Only appear at procedure level.

In the declaration Section:
Dim asNames() As String

Within a procedure:

ReDim asNames(10)

‘--ReDim releases the existing array and creates a new array with the same
rank.

or

ReDim Preserve asNames(15)

‘—ReDim Preserve, the elements from the existing array arecopied to the
new array.

ocwutm.my ©UIM

Initialisation of Arrays

arraynamefindex] = initialiser

Example:

Dim sGrade(6) as Integer
Option Base 1
sGrade(1) =90
sGrade(5) =92
forindex=2to 4
sGrade(index) = 100
next index
sGrade(6) = (sGrade(1) + sGrade(2))/2

ccw.utm.my ©UIM

L

Initialisation of Arrays

* If number of initialisers is less than the size of the array
- the remaining elements are initialised to zero.

e If Number of initialisers > size of array
- Syntax error

Dim x(10) As Integer

x(15) =10

x(-1) = 25

x(10)=3 T invalid element
. nvalid elemen

X(O) =0 accessed!

} _——— Becareful of option base. Only one of these
will be valid!

ocw.utm.my

©UIM

Assessing the value of an array

e \We need to be able to address the individual elements = in

an array

e We use the array name and the element number to access it

Example:

Dim asName(5) As String

Option Base 1
asName(2) = “Pete”

asName(3) = “Lucy”

Textl.Text = asName(4)

asName

(1) “Jane”

(2) “Pete”

(3) llLucy”

(4) “Dave”

(5) “lan”

ocw.utm.my ©UIM

Array Example

min = x(0)
Fori=0 To ARRAY_SIZE-1

If X(i) < min Then min = x(i)
Next |

» Can use code with any number of values
— Easier to read

ocw.utm.my ©UIM

Array Example

> Sum 100 numbers

Fori=0to 99
X(i) = Get_Number()
sum = sum + x(i)
Next i
MsgBox sum

ocw.utm.my ©UIM

Array Example

» Sum up to 100 numbers or until a 0 is returned.

Fori=0to 99
X(i) = Get_Number()
If x(i) = 0 Then
Exit For
Else
sum = sum + x(i)
End If
Next |

ocw.utm.my @UTM

LR PETLON B STB

Array Example

» Average up to 100 numbers or until a 0 is returned:

Fori=0to 99
X(i) = Get_Number()
If x(i) = 0 Then
Exit For
Else
sum = sum + x(i)
End If
Next |

average = sum /i

ocw.utm.my ©UIM

Finding Array Boundaries

» To find the bounds of a single dimension array we
can use:

iLowerBound = LBound(asNames)

iUpperBound = UBound(asNames)

» To find multi-dimensional bounds:

iUpperBound = UBound(asAddress, 2)

ocw.utm.my ©UIM

Multi-Dimensional Array

Visual basic will allow us up to 60 dimensions!

Do not to use too many dimensions, otherwise you will
become confused

Best idea is only to use multi-dimensional arrays where they
map clearly to the real-world

ocw.utm.my @ I_—,,T'I:M

Multi-Dimensional Array

 1-Dimensional array — has only one subscript

e 2-Dimensional arrays — have two subscripts
— Analogous to a table
e 1stsubscript represents the “row”
e 2nd subscript represents the “column”

e All elementsin a given array must be of the same
type, regardless of dimension

ocw.utm.my

©UIM

Two-Dimensional Array

Dim x(10, 2) As Integer

" Declares 10 x 2 integers, all referred to by x

* |ndividual items (elements) are accessed as x(m, n)

—x(2, 1), x(7, 0)

X(0, 0)

X(0,1)

X(1,0)

X(1,1)

X(2,0)

X(2,1)

X(3,0)

X(3,1)

X(4,0)

X(4,1)

X(5, 0)

X(5,1)

X(6,0)

X(6, 1)

X(7,0)

X(7,1)

X(8, 0)

X(8, 1)

X(9,0)

X(9,1)

ocw.utm.my @ I_—,,T'I:M

Declaring 2D Array

e DimiArray (1to 2, 1to5) as Integer
e Dim sGrades (1 to 30, 1 to 10) as Single
Either, an array of numeric grades on 10

items for each of 30 students
OR
An array of grades on 30 items for each of
10 students

Dim iArray(2,5) as Integer

Option Base 1

» iArray (1,2)=10

» iArray (2, 5) = iArray(1, 4) + iArray(1, 5)

ocw.utm.my @UTM

Assesing 2D Array

Dim sGrades (1 to 30, 1 to 10) as Single

> |1=7
J=5
sGrades (I,J) =93

x=1
y=2
iArray (1, x +y) =15

