

SEE 3243 Digital System

Lecturers : Muhammad Mun'im Ahmad Zabidi Muhammad Nadzir Marsono Kamal Khalil

Week 6: Arithmetic Circuits II — CLA, Comparators, ALU, Multiplier

ocw.utm.m

innovative • entrepreneurial • global

Full Adder Delay Analysis

From A, B to Co for one stage is 4 delays

From Ci to Co is 2 delays for each subsequent stage or 2n + 2 for n stages

Ripple Carry Adder Analysis

- Total delay for final sum & carry is 2n+2 gate delays (n = # of stages)
- Assumes XOR is 2 delays
- Delay from C_i to C_{i+1} is 2 gate delays (except stage 0, where delay is 4 units)

Carry Lookahead Adder Analysis

 $6\Delta 5\Delta$

PFA 2Δ G s P B_3 B₂ B₁ A_2 Α. Bo A₃ A.0 PEA PFA PFA PEA 2<u>Λ</u> P1 $c_2 \quad 4\Delta s_1 \quad G_1$ G_2 P₂ C. S₀ G₀ Po S₃ G₃ P_3 S2 Ga Pa C₃ G₂ P₂ C2 G, Ρ, c, G₀ P₀ 4Δ C_o 4Δ **4**Δ IG. Carry Lookahead

If we reduce the time to compute C_3 , we can reduce delay to get S_3 (final sum) to 6 gate delays

ocw.utm.my

Carry Lookahead Logic Derivation

Carry Generate $G_i = A_i B_i$ must generate carry when A = B = 1

Carry Propagate $P_i = A_i \text{ xor } B_i$

Sum and Carry can be reexpressed in terms of generate/propagate:

$$S_{i} = A_{i} \text{ xor } B_{i} \text{ xor } C_{i} = P_{i} \text{ xor } C_{i}$$
$$C_{i+1} = A_{i} B_{i} + A_{i} C_{i} + B_{i} C_{i}$$
$$= A_{i} B_{i} + (A_{i} + B_{i}) C_{i}$$
$$= A_{i} B_{i} + (A_{i} \text{ xor } B_{i}) C_{i}$$
$$= G_{i} + P_{i} C_{i}$$

Carry Lookahead Logic

• Reexpress the carry logic as follows:

$$C_{1} = G_{0} + P_{0} C_{0}$$

$$C_{2} = G_{1} + P_{1} C_{1}$$

$$= G_{1} + P_{1} G_{0} + P_{1} P_{0} C_{0}$$

$$C_{3} = G_{2} + P_{2} C_{2}$$

$$= G_{2} + P_{2} G_{1} + P_{2} P_{1} G_{0} + P_{2} P_{1} P_{0} C_{0}$$

$$C4 = G_{3} + P_{3} C_{3}$$

$$= G_{3} + P_{3} G_{2} + P_{3} P_{2} G_{1} + P_{3} P_{2} P_{1} G_{0} + P_{3} P_{2} P_{1} P_{0} C_{0}$$

• Variables are the adder inputs and C₀ (carry in to stage 0)!

Structure of One Stage in CLA

- To compute S_i , only $x_{i-1} \dots x_0$, $y_{i-1} \dots y_0$ and c_0 are needed.
- No need to wait for c_{i-1}

Alternative CLA Design

A modified implementation:

P_i computed using OR gates (slightly faster)

6-9

- S3

- S2

- S0

Cascading CLA

• Similar to ripple adder, but different latency

Delay of each stage is 4 gate levels instead of 10 for ripple adders

Hierarchical Carry Lookahead

- Second level carry lookahead unit extends lookahead to 16 bits
- If extended to 64 bits reduces gate delay from 130 to 14, or improved by a factor of 9 6-11

Carry Select Adder

- Redundant hardware to make carry calculation go faster
- Compute the high order sums in parallel
 - one addition assumes carry in = 0
 - the other assumes carry in = 1

Equality Comparators

1-bit comparator

4-bit comparator

ocw.utm.my

Iterative Comparator

Arithmetic Logic Unit

- Basic building block of every CPU.
- Combinational circuit.
- Does integer addition, subtraction.
- Also does all 16 bitwise logical operations.
- Does not do multiply, divide. They would be implemented either by a separate unit, or subroutines (slow but cheap).
- Floating operations are also one or more separate units. (More: faster, costlier.)
- Why combine arithmetic & logic? They share a lot of circuitry.

Common symbol for ALU

Sample ALU 1: Mux Approach

1. AND gate (c = a . b)

а	b	c = a . b		
0	0	0		
0	1	0		
1	0	0		
1	1	1		

Start with Simple Logical Operations

2. OR gate (c = a + b)

а	b	c = a + b
0	0	0
0	1	1
1	0	1
1	1	1

If Operation is 1, then Result = a OR b

Sample ALU 1

ALU 1 with Zero Detection

Sample ALU 2: Truth Table Approach

We want to design an ALU which can do the following operations:

m ₁	m ₀	Operation
0	0	A plus B
0	1	A minus B
1	0	A plus 1
1	1	A nor B

Assume inputs A and B are 4-bit 2's complement numbers, and F is output.

One way of obtaining the circuit is by creating the truth table:

m1	m0	a3	a2	a1	a0	b3	b2	b1	b0	f3	f2	f1	f0	A plus B
0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	1	0	0	0	1	
0	0	0	0	0	0	0	0	1	0	0	0	1	0	
1 1	0 1	0 0	0 0	0 0	0 0	A nor B								

A huge truth table. Imagine truth table for 8-bit inputs!

Sample ALU 2

- Design a universal logic block (called a bit slice) that accepts only 1-bit of the inputs (per logic block).
- We then copy and connect this bit slice as many times as there are input bits.

m ₁	m ₀	Operation
0	0	A plus B
0	1	A minus B
1	0	A plus 1
1	1	A nor B

Sample ALU 2

•

•

lacksquare

Each bit slice has 5 inp on the right.	outs a	nd 2 (outputs. Trutl	n table is		m 1 m 0 aibicin i ficouti 0 0 0 0 0 0 0 0 0 0 1 1 0
Remember, the bit slic same circuit for all inp			universal, i.e	. exactly	A tambah B	01010 01101 10010 10101
For A plus 1 operation input. But remember, operations require B in	it mu	•	•		44-1-1-B	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Another example: NO input, but the truth ta cini input.	•		•		A tolak B	$1 \ 0 \ 0 \ 01$ $1 \ 0 \ 1 \ 11$ $1 \ 1 \ 0 \ 10$ $1 \ 1 \ 1 \ 01$ $1 \ 0 \ 0 \ 0 \ 0 \ 00$ $0 \ 0 \ 1 \ 0$ $0 \ 1 \ 0 \ 00$
	m ₁	m ₀	Operation		A tambah 1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
		1 1 0 1 0 1 1 1 01				
	0	1	A minus B		A NOR B	1 100X1X 01X0X

A plus 1

A nor B

0

1

1

1

1 X X O X

ocw.utm.my

Sample ALU 2 Bit Slice Circuit for Sample ALU 2

6-26

ocw.utm.my

Sample ALU 2 Circuit for Sample ALU 2 for 4-Bit Inputs

74x181 TTL ALU

Selection M = 1				M = 1	M = 0, Arithm	etic Functions
S3	S2	S1	S0	Logic Function	Cn = 0	Cn = 1
0	0	0	0	F = not A	F = A minus 1	F = A
0	0	0	1	F = A nand B	F = A B minus 1	F = A B
0	0	1	0	F = (not A) + B	F = A (not B) minus 1	F = A (not B)
0	0	1	1	F = 1	F = minus 1	F = zero
0	1	0	0	F = A nor B	F = A plus (A + not B)	F = A plus (A + not B) plus 1
0	1	0	1	F = not B	F = A B plus (A + not B)	F = A B plus (A + not B) plus 1
0	1	1	0	F = A xnor B	F = A minus B minus 1	F = (A + not B) plus 1
0	1	1	1	F = A + not B	F = A + not B	F = A minus B
1	0	0	0	F = (not A) B	F = A plus (A + B)	F = A plus (A + B) plus 1
1	0	0	1	F = A xor B	F = A plus B	F = A plus B plus 1
1	0	1	0	F = B	F = A (not B) plus (A + B)	F = A (not B) plus (A + B) plus 1
1	0	1	1	F = A + B	F = (A + B)	F = (A + B) plus 1
1	1	0	0	F = 0	F = A	F = A plus A plus 1
1	1	0	1	F = A (not B)	F = A B plus A	F = AB plus A plus 1
1	1	1	0	F = A B	F= A (not B) plus A	F = A (not B) plus A plus 1
1	1	1	1	F = A	F = A	F = A plus 1

Due to arithmetic equivalence, active HIGH or active LOW input and outputs are available!

Not all operations useful, but fall out when doing the useful ones

16-bit ALU with Carry Lookahead Unit

CLA unit speeds up calculations of multi-chip ALU

6-30

74x381 and 74x382 ALUs

				74x38	1	74x382
	Inputs			5 S0		5 S0
S2	S1	S0	Function	6 S1 7 S2	G 0 13	
0	0	0	F = 0000	15CIN	P p	
0	0	1	F = B minus A minus 1 plus CIN	A0	F0	A0 F0
0	1	0	F = A minus B minus 1 plus CIN	B0 A1	F1 9	B0 1 A1 F1
0	1	1	F = A plus B plus CIN	2 B1		2 B1
1	0	0	$F = A \oplus B$		F2 11	
1	0	1	F = A + B			10 B2
1	1	0	$F = A \cdot B$	17 A3 16 B3	F3	A3 F3
1	1	1	F = 1111	55		- 50

- Compared to 74x181, these ALUs encode their select inputs more compactly, and provide only eight different but useful functions
- The difference?
 - 74x381 provides group carry lookahead outputs
 - 74x382 provides ripple carry-out and overflow outputs

Combinational Multiplier

- Product of 2 4-bit numbers is an 8-bit number
- Product of m-bit x nbit numbers is an (m+n)-bit number

				A_3	A ₂	A ₁	A ₀
				B_3	B ₂	B ₁	B ₀
				A_3B_0	A_2B_0	A_1B_0	A_0B_0
			A_3B_1	A_2B_1	A_1B_1	A_0B_1	
		A_3B_2	A_2B_2	A_1B_2	A_0B_2		
	A_3B_3	A_2B_3	A_1B_3	A_0B_3			
S ₇	S_6	S_5	S_4	S ₃	S ₂	S ₁	S ₀

Combinational Multiplier

Fig. 3-33 A 2-Bit by 2-Bit Binary Multiplier

Basic Idea of A Larger Multiplier

6-34

4x4 Combinational Multiplier

Note use of parallel carry-outs to form higher order sums

12 Adders, if full adders, this is 6 gates each = 72 gates

16 gates form the partial products

total = 88 gates!

Combinational Multiplier

Another Representation of the Circuit

Building block: full adder + and

