SEE 3243 Digital System

Lecturers :

Muhammad Mun'im Ahmad Zabidi Muhammad Nadzir Marsono Kamal Khalil

Week 6: Arithmetic Circuits II — CLA, Comparators, ALU, Multiplier

Full Adder Delay Analysis

Ripple Carry Adder Analysis

Total delay for final sum \& carry is $2 n+2$ gate delays ($\mathrm{n}=$ \# of stages)
Assumes XOR is 2 delays
Delay from C_{i} to $\mathrm{C}_{\mathrm{i}+1}$ is 2 gate delays (except stage 0 , where delay is 4 units)

Carry Lookahead Adder Analysis

Carry Lookahead Logic Derivation

Carry Generate $\mathrm{G}_{\mathrm{i}}=\mathrm{A}_{\mathrm{i}} \mathrm{B}_{\mathrm{i}} \quad$ must generate carry when $\mathrm{A}=\mathrm{B}=1$
Carry Propagate $P_{i}=A_{i}$ xor B_{i}

Sum and Carry can be reexpressed in terms of generate/propagate:

$$
\begin{aligned}
& S_{i}= A_{i} \times o r B_{i} \text { xor } C_{i}=P_{i} \text { xor } C_{i} \\
& \begin{aligned}
C_{i+1} & =A_{i} B_{i}+A i C_{i}+B i C_{i} \\
& =A_{i} B_{i}+\left(A_{i}+B_{i}\right) C_{i} \\
& =A_{i} B_{i}+\left(A_{i} \times \text { or } B_{i}\right) C_{i} \\
& =G_{i}+P_{i} C_{i}
\end{aligned}
\end{aligned}
$$

Carry Lookahead Logic

- Reexpress the carry logic as follows:

$$
\begin{aligned}
C_{1} & =G_{0}+P_{0} C_{0} \\
C_{2} & =G_{1}+P_{1} C_{1} \\
& =G_{1}+P_{1} G_{0}+P_{1} P_{0} C_{0} \\
C_{3} & =G_{2}+P_{2} C_{2} \\
& =G_{2}+P_{2} G_{1}+P_{2} P_{1} G_{0}+P_{2} P_{1} P_{0} C_{0} \\
C 4 & =G_{3}+P_{3} C_{3} \\
& =G_{3}+P_{3} G_{2}+P_{3} P_{2} G_{1}+P_{3} P_{2} P_{1} G_{0}+P_{3} P_{2} P_{1} P_{0} C_{0}
\end{aligned}
$$

- Variables are the adder inputs and C_{0} (carry in to stage 0)!

Structure of One Stage in CLA

To compute S_{i}, only $x_{i-1} \ldots x_{0}, y_{i-1} \ldots y_{0}$ and c_{0} are needed.

- No need to wait for $\mathrm{C}_{\mathrm{i}-1}$

Alternative CLA Design

A modified implementation:

$$
\begin{aligned}
C_{i+1} & =A_{i} B_{i}+A i C_{i}+B i C_{i} \\
& =A_{i} B_{i}+\left(A_{i}+B_{j} C_{i}\right. \\
& =G_{i}+P_{i} C_{i}
\end{aligned}
$$

P_{i} computed using OR gates (slightly faster)

74×283

4-bit adder

- Uses carry lookahead internally
74×283

7				
5	C0			
6	A0	S0	4	
3	B0			
2	A1	S1	1	
14	B1			
15	A2	S2	13	
12	B2			
11	A3	S3	10	
	B3	C4	9	

Cascading CLA

- Similar to ripple adder, but different latency

Delay of each stage is 4 gate levels instead of 10 for ripple adders

Hierarchical Carry Lookahead

- Second level carry lookahead unit - extends lookahead to 16 bits

If extended to 64 bits - reduces gate delay from 130 to 14 , or improved by a factor of 9

Carry Select Adder

- Redundant hardware to make carry calculation go faster
- Compute the high order sums in parallel
- one addition assumes carry in $=0$
- the other assumes carry in =1

Equality Comparators

1-bit comparator

4-bit comparator

8-bit Magnitude Comparator
 74x682

Iterative Comparator

Arithmetic Logic Unit

- Basic building block of every CPU.
- Combinational circuit.
- Does integer addition, subtraction.
- Also does all 16 bitwise logical operations.
- Does not do multiply, divide. They would be implemented either by a separate unit, or subroutines (slow but cheap).
- Floating operations are also one or more separate units. (More: faster,
 costlier.)
- Why combine arithmetic \& logic? They share a lot of circuitry.

Sample ALU 1: Mux Approach

1. AND gate $(\mathrm{c}=\mathrm{a} . \mathrm{b})$

Start with
Simple
Logical Operations
2. $O R$ gate $(c=a+b)$

a	b	$c=a \cdot b$
0	0	0
0	1	0
1	0	0
1	1	1

a	b	$c=a+b$
0	0	0
0	1	1
1	0	1
1	1	1

Sample ALU 1

Operation
Use 2:1 MUX to choose 1 of 2 logical operations

If Operation is 0 , then Result $=a$ AND b
If Operation is 1 , then Result $=a$ OR b

Sample ALU 1

Now add Full Adder for arithmetic

```
If Op is 0, then Result = a AND b
If Op is 1, then Result = a OR b
If Op is 2, then Result = sum of (a + b + Carryln)
```


Sample ALU 1

Repeat the 1-bit ALU 32 times

$$
\begin{aligned}
& \text { If } O p \text { is } 0 \text {, then Result }{ }_{i}=a_{i} \text { AND } b_{i} \\
& \text { If } O p \text { is } 1 \text {, then Result } i_{i}=a_{i} O R b_{i} \\
& \text { If } O p \text { is } 2 \text {, then Result }{ }_{i}=\text { sum of }\left(a_{i}+b_{i}\right)
\end{aligned}
$$

ALU 1 with Subtraction Ability

If $O p$ is 0 , then Result $=a$ AND b
If $O p$ is 1 , then Result $=a$ OR b

If $O p$ is 2 ,
and if Binvert is 0 ,
then Result $=\operatorname{sum}(a+b)$
if Binvert is 1 ,
then Result $=\operatorname{sum}(a+(-b))$

$$
\text { Note that }(-b) \text { is } 1 \text { 's comp }
$$

```
Add a 1 into Carryin
```


ALU 1 with Zero Detection

Sample ALU 2: Truth Table Approach

We want to design an ALU which can do the following operations:

\mathbf{m}_{1}	$\mathbf{m}_{\mathbf{0}}$	Operation
0	0	A plus B
0	1	A minus B
1	0	A plus 1
1	1	A nor B

Assume inputs A and B are 4-bit 2's complement numbers, and F is output.
One way of obtaining the circuit is by creating the truth table:

m1	m0	a3	a2	a1	a0	b3	b2	b1	b0	f3	f2	f1	f0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0	0	1	0	0	0	1	A plus B
0	0	0	0	0	0	0	0	1	0	0	0	1	0	
.														
\cdot														
1	1	1	1	1	1	1	1	1	0	0	0	0	0	
1	1	1	1	1	1	1	1	1	1	0	0	0	0	A nor B

A huge truth table. Imagine truth table for 8-bit inputs!

Sample ALU 2

- Design a universal logic block (called a bit slice) that accepts only 1-bit of the inputs (per logic block).
- We then copy and connect this bit slice as many times as there are input bits.

\mathbf{m}_{1}	$\mathbf{m}_{\mathbf{0}}$	Operation
0	0	A plus B
0	1	A minus B
1	0	A plus 1
1	1	A nor B

Sample ALU 2

- Each bit slice has 5 inputs and 2 outputs. Truth table is on the right.
- Remember, the bit slice circuit is universal, i.e. exactly same circuit for all input bits.
- For A plus 1 operation for example, we don't need B input. But remember, it must be universal. Other operations require B input.
- Another example: NOR operation doesn't require cini input, but the truth table for NOR operation must have cini input.

$\mathbf{m}_{\mathbf{1}}$	$\mathbf{m}_{\mathbf{0}}$	Operation
0	0	A plus B
0	1	A minus B
1	0	A plus 1
1	1	A nor B

Sample ALU 2
 Bit Slice Circuit for Sample ALU 2

Sample ALU 2

74x181 TTL ALU

Selection				$M=1$ Logic Function	$M=0$, Arithmetic Functions	
S3	S2	S1	S0		$\mathrm{Cn}=0$	$\mathrm{Cn}=1$
0	0	0	0	$F=\operatorname{not} A$	$\mathrm{F}=\mathrm{A}$ minus 1	$F=A$
0	0	0	1	$F=A$ nand B	$F=A B$ minus 1	$F=A B$
0	0	1	0	$F=(\operatorname{not} A)+B$	$F=A(n o t B)$ minus 1	$F=A($ not $B)$
0	0	1	1	$F=1$	$F=$ minus 1	$\mathrm{F}=$ zero
0	1	0	0	$F=A$ nor B	$F=A$ plus ($\mathrm{A}+\mathrm{not} \mathrm{B})$	$\mathrm{F}=\mathrm{A}$ plus $(\mathrm{A}+$ not B$)$ plus 1
0	1	0	1	$F=\operatorname{not} B$	$F=A B$ plus ($A+$ not B)	$F=A B$ plus $(A+$ not $B)$ plus 1
0	1	1	0	$F=A$ xnor B	$F=A$ minus B minus 1	$F=(A+n o t B)$ plus 1
0	1	1	1	$F=A+\operatorname{not} B$	$F=A+\operatorname{not} B$	$F=A$ minus B
1	0	0	0	$F=(\operatorname{not} A) B$	$F=A$ plus $(A+B)$	$F=A$ plus $(A+B)$ plus 1
1	0	0	1	$F=A \operatorname{cor} B$	$F=A$ plus B	$F=A$ plus B plus 1
1	0	1	0	$F=B$	$F=A(n o t B)$ plus ($A+B$)	$F=A(n o t B)$ plus ($A+B$) plus 1
1	0	1	1	$F=A+B$	$F=(A+B)$	$F=(A+B)$ plus 1
1	1	0	0	$F=0$	$F=A$	$\mathrm{F}=\mathrm{A}$ plus A plus 1
1	1	0	1	$F=A($ not $B)$	$F=A B$ plus A	$F=A B$ plus A plus 1
1	1	1	0	$F=A B$	$F=A(n o t B)$ plus A	$F=A$ (not B) plus A plus 1
1	1	1	1	$F=A$	$F=A$	$F=A$ plus 1

Due to arithmetic equivalence, active HIGH or active LOW input and outputs are available! Not all operations useful, but fall out when doing the useful ones

74x181 TTL ALU

74×181

16-bit ALU with Carry Lookahead Unit

CLA unit speeds up calculations of multi-chip ALU

74×381 and 74×382 ALUs

Inputs			
S 2	S 1	S 0	
0	0	0	$\mathrm{~F}=0000$
0	0	1	$\mathrm{~F}=\mathrm{B}$ minus A minus 1 plus CIN
0	1	0	$\mathrm{~F}=\mathrm{A}$ minus B minus 1 plus CIN
0	1	1	$\mathrm{~F}=\mathrm{A}$ plus B plus CIN
1	0	0	$\mathrm{~F}=\mathrm{A} \oplus \mathrm{B}$
1	0	1	$\mathrm{~F}=\mathrm{A}+\mathrm{B}$
1	1	0	$\mathrm{~F}=\mathrm{A} \cdot \mathrm{B}$
1	1	1	$\mathrm{~F}=1111$

- Compared to 74×181, these ALUs encode their select inputs more compactly, and provide only eight different but useful functions
- The difference?
- 74×381 provides group carry lookahead outputs
- 74x382 provides ripple carry-out and overflow outputs

Combinational Multiplier

Product of 2 4-bit numbers is an 8 -bit number
Product of m-bit $\times n$ bit numbers is an ($m+n$)-bit number

				$\begin{aligned} & \mathrm{A}_{3} \\ & \mathrm{~B}_{3} \end{aligned}$	$\begin{aligned} & \mathrm{A}_{2} \\ & \mathrm{~B}_{2} \end{aligned}$	$\begin{aligned} & \mathrm{A}_{1} \\ & \mathrm{~B}_{1} \end{aligned}$	A_{0} $\mathrm{~B}_{0}$
				$\mathrm{A}_{3} \mathrm{~B}_{0}$	$\mathrm{A}_{2} \mathrm{~B}_{0}$	$\mathrm{A}_{1} \mathrm{~B}_{0}$	$\mathrm{A}_{0} \mathrm{~B}_{0}$
			$\mathrm{A}_{3} \mathrm{~B}_{1}$	$\mathrm{A}_{2} \mathrm{~B}_{1}$	$A_{1} B_{1}$	$\mathrm{A}_{0} \mathrm{~B}_{1}$	
		$\mathrm{A}_{3} \mathrm{~B}_{2}$	$\mathrm{A}_{2} \mathrm{~B}_{2}$	$\mathrm{A}_{1} \mathrm{~B}_{2}$	$\mathrm{A}_{0} \mathrm{~B}_{2}$		
	$\mathrm{A}_{3} \mathrm{~B}_{3}$	$\mathrm{A}_{2} \mathrm{~B}_{3}$	$\mathrm{A}_{1} \mathrm{~B}_{3}$	$\mathrm{A}_{0} \mathrm{~B}_{3}$			
	S_{6}	S_{5}	S_{4}	S_{3}	S_{2}	S_{1}	S_{0}

Partial products					1	1			
		X			1	0			
					1	1			
				1	1	0			
			0	0	0	0			
		1	1	0	1				
	1	0	0	0	1	1			

Combinational Multiplier

$$
\begin{array}{cccc}
& & \mathrm{B}_{1} & \mathrm{~B}_{0} \\
& & \mathrm{~A}_{1} & \mathrm{~A}_{0} \\
\cline { 3 - 4 } & & \mathrm{~A}_{0} \mathrm{~B}_{1} & \mathrm{~A}_{0} \mathrm{~B}_{0} \\
& \mathrm{~A}_{1} \mathrm{~B}_{1} & \mathrm{~A}_{1} \mathrm{~B}_{0} & \\
\hline \mathrm{C}_{3} & \mathrm{C}_{2} & \mathrm{C}_{1} & \mathrm{C}_{0}
\end{array}
$$

Fig. 3-33 A 2-Bit by 2-Bit Binary Multiplier

Basic Idea of A Larger Multiplier

4×4 Combinational Multiplier

Note use of parallel carry-outs to form higher order sums

12 Adders, if full adders, this is 6 gates each $=72$ gates
16 gates form the partial products

$$
\text { total = } 88 \text { gates }
$$

Combinational Multiplier

Another Representation of the Circuit

Building block: full adder + and

