

SKM 3413 - DRILLING ENGINEERING

Chapter 4 - Drilling Problems

Assoc. Prof. Abdul Razak Ismail

Petroleum Engineering Dept. Faculty of Petroleum & Renewable Energy Eng. Universiti Teknologi Malaysia

ocw.utm.m

innovative • entrepreneurial • global

Contents

- 1. Stuck pipe/pipe sticking
- 2. Lost circulation
- 3. Shale problem/borehole instability
- 4. Mobile formations
- 5. Undergauge hole
- 6. Kick and blowout
- 7. Other problems
 - Shallow hydrocarbon zones
 - High bottomhole temperature
 - Corrosion

1. Stuck pipe/pipe sticking

- <u>Definition</u>: When part of the drill pipe or collars are stuck in the hole
- If pipe cannot be rotated or pulled and circulation is good, then pipe is probably wall stuck
- Causes of pipe sticking:
 - a. Differential/wall sticking
 - b. Mechanical sticking
 - c. Key seating

a. Differential/wall sticking

<u>Definition</u>: A pressure differential around the circumference of drill collars or pipe

Wall sticking is caused by:

- pipe is held by suction force resultant from overbalance hydrostatic pressure forcing filtrate into a permeable zone which leaves a thick mud cake on the wall of the hole
- porous and permeable formation
- motionless drill string

- To free wall-stuck pipe:
 - apply torque and tension to try to work the pipe loose
 - if possible, reduce the mud weight
 - determine the stuck point and spot a mixture of surfactant and oil

Prevention of wall sticking

- To minimize the possibility of wall sticking:
 - reduce the differential pressure
 - reduce the contact area: install stabilizers
 - use an oil-emulsion mud
 - use extreme-pressure lubricants
 - use low mud weights
 - use low solids content in the mud
 - stop circulation only when necessary
 - avoid long strings of large diameter drill collars
 - keep the hole as straight as possible
 - never stop drill collars adjacent to any permeable formation

b. Mechanical sticking

A drill pipe can be stuck mechanically when:

- Cuttings and sloughing formations pack off the annular space around the drill string (especially during a pump shutdown period)
- Drill through several layers of formation of different hardness
- Junk dropped from surface
- The drill string is run too fast until it hits a bridge, a tight spot or the hole bottom

To free mechanical sticking

- To work the drill string either by rotating and pulling it or by activating a drilling jar
- If this method fails, an organic fluid must be spotted and the above procedure has to be repeated
- The use of back-off operation is the final solution

c. Key seating

<u>Definition</u>: a phenomenon happens at the dogleg where a new hole is created by drill string until the drill pipe is stuck to the wall

When it passes through a dogleg, it tries to straighten and thus, creating a lateral force which causes the drill pipe joint to dig into the formation at the dogleg bow

A key-seat can only be formed if the formation is really soft and the hanging weight below the dogleg is big enough to create a substantial lateral force

This problem can be identified when the drill string can be moved downwards but not upwards

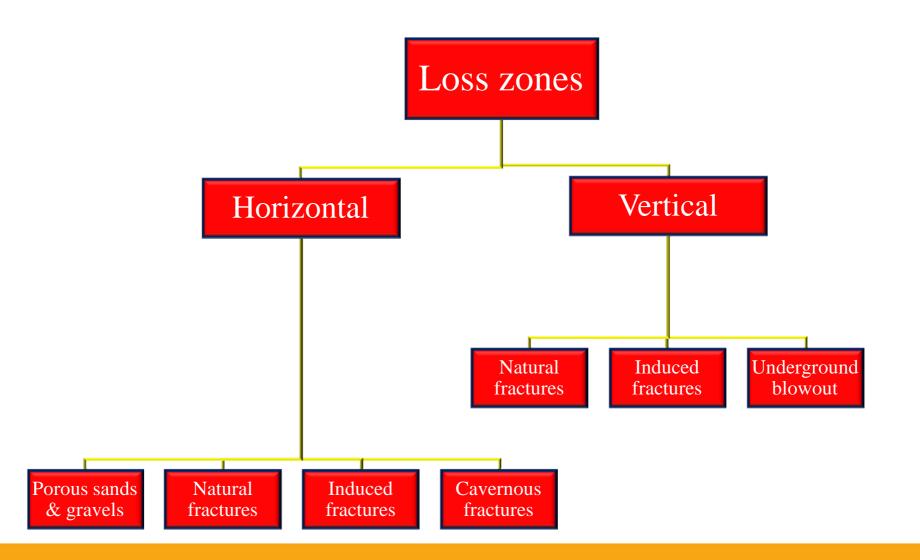
- To prevent key seating
 - drill straight holes or avoid sudden changes in hole inclination and direction in deviated wells
- To remove a key-seat:
 - the hole should be reamed
 - organic fluids can be spotted to reduce friction round the key-seat in order to facilitate the working of the pipe

2. Lost Circulation

- One of the major problems in drilling operation
- Occurred in almost every formation and at virtually all depths
- Occurs when hydrostatic pressure of mud exceeds the breaking strength of the formation
- <u>Definition</u>: Partial or complete loss of drilling fluid during drilling, circulating or running casing

Type of Lost Circulation

- Those types inherent in the formation:
 - porous, permeable, and unconsolidated formations
 - cavernous or irregular formations
 - natural fractures in formations (faults, joints, fissures)
- Those openings caused by poor drilling practices:
 induced fractures caused by high mud weights or pressure surges



Causes of Lost Circulation

- Rapid running of pipe i.e. generating surge pressures (tripping in or out)
- Spudding the bit or core barrel on the bottom of the hole
- Raising mud weight too quickly
- Improper balanced column of mud $(P_{hyd} > P_f)$
- Increasing pump pressure too quickly
- Whipping pipe
- High gel strength
- Sloughing shales (closed annular space)

Types of loss zones

Identifying features of horizontal loss zones

- Porous sands and gravels
 - gradual lowering of mud levels in pits
 - losses may become complete if drilling is continued
- Induced fractures
 - marked increase in pump pressure
 - drilling becomes tight

• <u>Natural Fractures</u>

- may occur in any types rock
- gradual lowering of the mud in pits.
- Fracture must have a finite supported width to take mud
- Cavernous zones
 - normally confined to limestone
 - loss of returns may be sudden and complete
 - drilling may be rough before loss

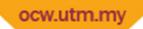
Identifying features of vertical loss zones

- Natural fractures
 - may occur in any type rock
 - loss will go from partial to complete as more formation is drilled, particularly if drilling is accompanied by an increase in mud weight

- <u>Induced fractures</u>
 - may occur in any type rock
 - Sudden loss, complete loss of returns
 - when loss of circulation
 occurs and adjacent wells
 have not experienced loss

- <u>Underground blowout</u>
 - fluids flow from a lower active zone to an upper induced vertical fracture
 - Unstable pressure readings, change in pressures and mud volumes

Natural causes


- Unconsolidated shallow formations
- Porous and permeable formations
- Natural Fractures and voids
- Easily Fractured Formations

Unconsolidated shallow formations

- This formation may be highly fractured shale, sandstone and limestone.
- Sands and gravel ranging in size from fine to boulders also commonly occur.
- It usually occurs near the surface and the fractured formations at deeper depths.

Porous and permeable formation

- Porous, permeable sands occur at any depth.
- Porosity and permeability generally decrease with depth
- The lost circulation rate usually controlled by the permeability of the sand, the viscosity of the mud, and the differential pressure between the pores and the mud column.
 - The lost-circulation rate is relatively constant and often decreases with time, as the filter cake is built up on the borehole wall and some distance into sand.

Natural fractures and voids

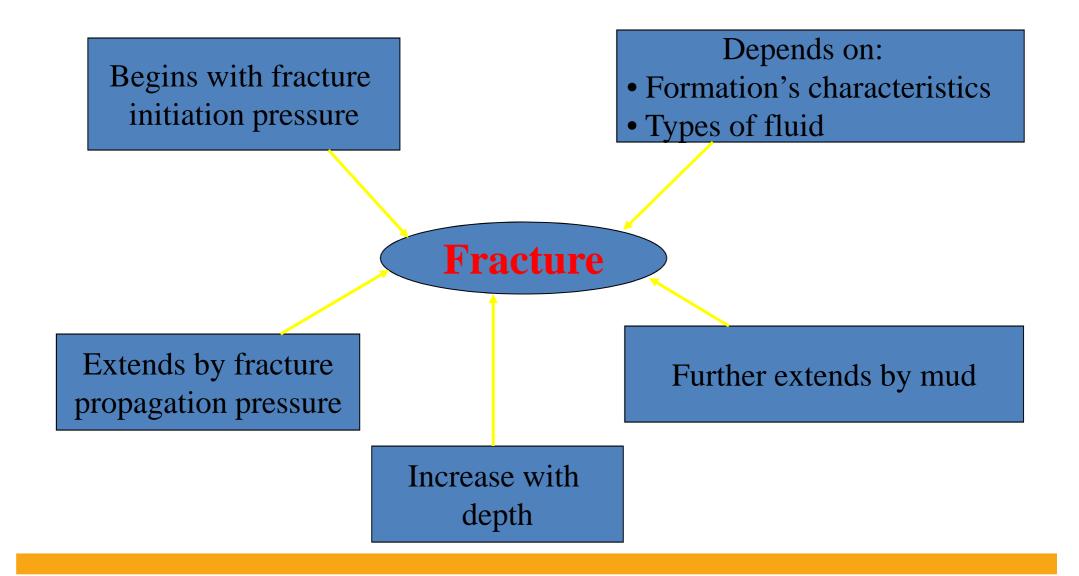
- Natural fractures and voids can occur at all depths in all formation
 - The frequency of occurrence increases in the older, harder, more consolidated formation that usually found deeper and also been subjected to tectonic forces and stresses
- Once the fracture has been opened by an imposed pressure, mud lost to the fracture at a rapid rate can widen the fracture. Even though the pressure is later reduced, the opening may not close completely and the loss of circulation will continue

Easily fractured formations

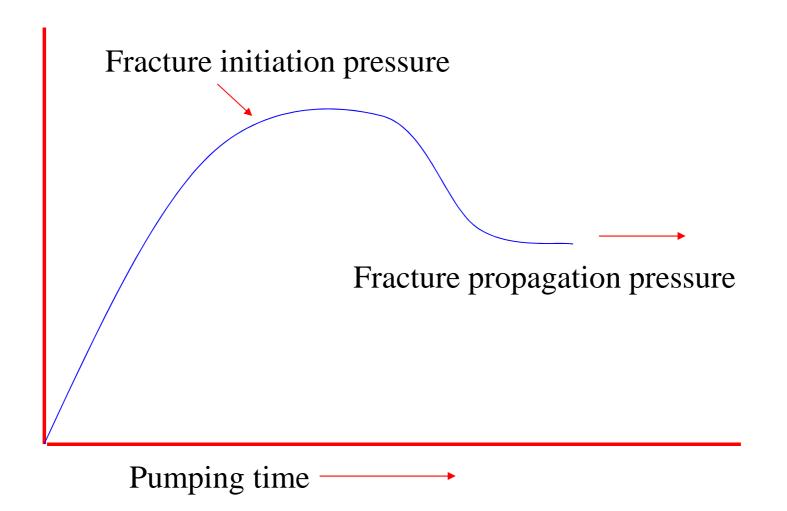
- If the formation is weak, fractures may be created cause by the induced pressure, and the mud pumped away

Induced lost circulation

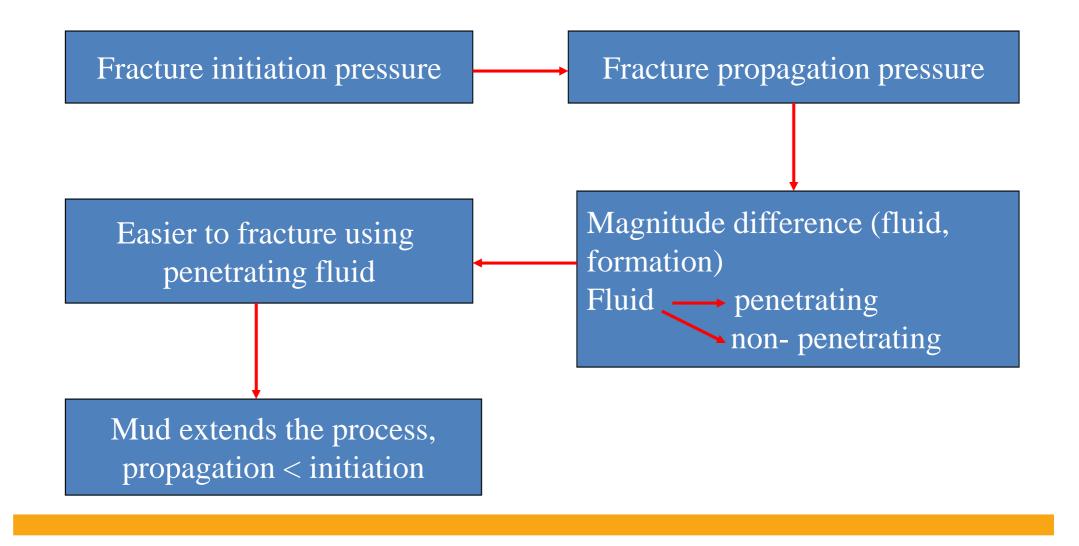
- Definition
 - Mud loss caused by operator's action during the drilling operation
- Types
 - Overpressuring and fracturing the formation by initiating a fracture
 - Results of excess pressure
 - ✓ poor flow properties in mud system
 - pressure surges



Induced lost circulation



How fracture is formed?



How fracture is formed?


How fracture is formed?

Effects of Lost Circulation

- Loss of muds (high cost)
- Loss of drilling time (consequent cost increases)
- No information on the formation being drilled
- If the lost circulation zone is a potential pay zone, considerable productivity impairment may result
- The drop in annular mud level may cause a blowout
- Excessive caving of formation

Treatment

- Identify the source of mud loss
- Determine the appropriate treatment

Criticality of Loss Circulation

• The severity of the loss (the rate) will dictate the criticallity of the situation and the emergency of the action to be taken

Туре	Amount loss (% of the circulating rate)	Action/Remarks	
Seepage loss	< 10%	Usually treated as a routine problem without interfering with any part of the operation	
Slight loss	Treated immediately but the current 10 - 25% operation may continue if geopressured zones are not present in the well		
Hazadous	25 - 50%	Stop all operations (excluding well control) until remedial action has	
Severe	> 50%	resolved the problem	

Loss Severity	Loss Rate (bbl/hr)	Typical Formation	LCM Type/Treatment
Seepage	1 to 10	Porous and permeable	Fine - medium granular Fine - medium fibre
Partial	10 to 50	Unconsolidated sands and gravels; Small open fractures	Fine - coarse granular Fine - coarse fibre Fine - coarse flake
Severe	50 to 100	Long sections of unconsolidated sands etc Fractures	Medium - coarse granular Medium - coarse fibre Medium - coarse flake
Total	>500	Cavernous Large fractures	Sodium silicate and cement Gunk treatments

To Combat LC

- Raised the bit into the cased part of the hole & wait
- Reduce mud weight
- Spot LCM of proper size

Prevention of LC

- Control downhole pressure
 - minimize hydrostatic pressure
 - maintain minimum annular velocity
 - avoid restriction in the annulus
- Setting the intermediate casing into the transition zone
- Raised weight of mud gradually when combating high pressure zones
- Start pumps only after rotating pipe
- Run & pull drill pipe in the hole slowly
- Never spud pipe
- In areas of known LC pretreat with LCM

Prevention of LC (ctd)

- Break circulation slowly
 - circulate at a slow rate and low pressure until good returns are obtained without loss of mud, then increase the circulation rate
- Selecting a mud system
 - maintain a minimum mud viscosity and gel strength to prevent setting of the weighing material
 - mud system should be able to resist contamination
 - maintain minimum mud density
 - use filler materials (loss circulation materials) to prevent severe loss of mud to the formation to restore circulation

Prevention of LC (ctd)

- Use a simple drilling programme and have a good drilling practice
 - drill the lost-circulation zone with a maximum-clearance drilling assembly
 - lower the drill pipe slowly
- Observation of well hole and precautionary steps
 - extra mud-storage capacity
 - make sure supply of mud-mixing and lost circulation material is ample
 - observe the mud level

Remedial actions

- Reduction of mud weight
- Correction of lost returns by "waiting periods"
- Placement of soft plugs LCM
- Placement of mud containing a high concentration of bridging particles
- Adoption of special drilling methods such as "blind drilling", drilling under pressure, drilling with air, or aerated mud
- Drill ahead-cuttings circulating in the mud system can act as lost-circulation material
- Pull the bit up at least 50 ft from the bottom
- Dry drill minimize the effects of lost circulation or regaining circulation in minimal time

LCM

- Fibrous material sawdust, cotton seed hulls, hay, leather, bark
- Lamellated (flat, flacky) material mica, cellophane
- Granular material nut shell, perlite, volcanic ash
- Combination of two or more of the above materials

3. Shale problem/borehole instability

- Shale:
 - sedimentary rock form by deposition and compaction of sediments
 - contain clays, silt water, quartz, feldspar
 - compact or unconsolidated rock depend on water content
- Definition of shale problem/borehole instability:
 - a condition where the shale section containing bentonite or other hydratable clays which continually absorb water from the mud, expands, swell & slough into the hole
 - hole instability resulting from drilling shale sections
- Other terms: sloughing shale, heaving shale, running shale

Problems due to Sloughing Shale

- Ineffective hole cleaning
- Stuck pipe & its recovery
- Bridges & filled up
- Increased mud volume & treating costs
- Poor cement jobs & increase cement requirements
- Difficult logging
- Poor sidewall recovery
- Wellbore enlargement
- Excessive solid build up in the mud

- A sloughing hole can jam the drill string and block circulation
- Severity depend on:
 - percentage content of montmorillonite (higher montmorillonite, higher shale dispersion)
 - the age of the rock (older shale, lower dispersion)

Causes of Sloughing Shale

- Hydration of shale
- Mechanical fissuring of shale sections due to pressure surges
- Restricted hole gauge (balling, etc.)

Borehole instability

- An unstable borehole poses several problems for the drilling operation:
 - fill on trips increasing the drilling time & decreasing bit life
 - hole washout
 - swelling formations producing tight hole

Causes of shale instability

- Overburden pressure
- Pore pressure
- Tectonic forces
- Water adsorption
 - Dispersion
 - Swelling

Main factor of sloughing shale

Mechanical factors

Hydration factors

Mechanical factors

- Erosion effect
 - annular flow of mud
 - depend on degree of turbulence in the annulus and mud viscosity
- Impaction by drill string cause the breakage of shale
- Caving due to horizontal movement of the shale section

Hydration factors

- Shale hydration force
 - the drilling of shale section relieves the compaction force on the borehole
- Osmotic hydration
 - the difference in salinity between the mud and formation water of the shale
 - <u>adsorption force</u> when formation water of the shale is more saline than the mud
 - <u>desorption force</u> when the mud is more saline than the formation water

Other factors

- Dipping shale
 - shale expansion in a direction perpendicular to its bedding planes
 - more shale heaving when the section is highly dipping
- Abnormal pressured shale
 - water content of the rock is much higher compared to the normal pressure shale
 - plasticity of the shale is high due to the overburden load
 - shale will be squeezed into the hole because the difference between formation pore pressure and mud hydrostatic pressure

Planning...

- Examine the geology of the area for the presence of water sensitive clays
- Check the past case histories of geopressure formation

Prevention of sloughing shale

- Use suitable mud system to inhibit hydration (high Ca & K content, OBM, oil-emulsion, ...) to decrease the tendency of mud to hydrate water sensitive clays
- Increase circulation rate for more rapid removal of particles
- Increase mud density for greater wall support $(P_{hvd} > P_f)$
- Decrease water loss of mud
- Avoid fast trips or swabbing of the hole
- Keep flow properties & annular velocity at such a level as to insure good hole cleaning

4. Mobile formations

- A <u>salt</u> or <u>shale</u> can squeeze into the well bore because it is being compressed by the overburden forces
- The deformation results in a decrease in the well bore size, causing problems running BHA's, logging tools and casing and stuck pipe
- A deformation occurs because the mud weight is not sufficient to prevent the formation squeezing into the well bore
- Once broken, the hole will become enlarge

Warning Signs

- Increase in mud chlorides
- Large overpulls at connections
- Pump pressure increase

Rig site identification

- Stuck shortly after pumps are turned off
- Rotation may be possible but with high torque
- Overpull when moving up, takes weight when running in
- Sticking occurs with BHA at mobile formation depth
- Restricted circulation with BHA at mobile formation depth

Preventive Actions

- Identify salt dome
- Monitor mud chlorides and mud resistivity
- Maintain sufficient mud weight
- Select an appropriate mud system that will not aggravate the mobile formation
- Plan frequent reaming/wiper trips particularly for this section of the hole
- Slow trip speed before BHA enters the suspected area
- Minimize the open hole exposure time of these formations
- With mobile salts, consider using a slightly under-saturated mud system to allow a controlled washout

5. Undergauge hole

- Drilling hard abrasive rock wears the bit and the stabiliser gauge and results in a smaller than gauge hole
- When a subsequent in-gauge bit is run, it encounters resistance due to the undergauge section of hole
- If the string is run into the hole quickly without reaming, the bit can jam in the undergauge hole section
- This mechanism normally occurs:
 - After running a new bit
 - After coring
 - When a PDC bit is run after a roller cone bit
 - When drilling abrasive formations

Rig site identification

- Pulled bit or stabilisers are undergauge
- Occurs only when RIH
- Sudden setdown weight
- Circulation is unrestricted or slightly restricted
- Bit stuck near the bottom of the hole or at the top of a cored section

Preventative Action

- Use suitably gauge-protected bits and stabilisers
- Consider the use of roller reamers
- Always gauge all BHA components both when running in and pulling out of the hole
- Ream suspected undergauge sections
- Slow the trip speed down before the BHA enters an undergauge zone

6. Kick and blowout

- <u>Kick</u>: An entry of formation fluids (gas, oil or water) into the wellbore during drilling
- <u>Blowout</u>: Uncontrolled flow of formation fluids (gas, oil or water) from the wellbore
- Kick and blowout can occur when hydrostatic pressure of mud is lower than the formation pressure

Causes of Kick/Blowout

- Drilling into high pressure zones (abnormal pressure)
- Swabbing when coming out of the hole
- Improper hole fill-up on trips
- Lost circulation during drilling or cementing

Detection of Kick/Blowout

- Rise in pit level
- Hole fails to take right amount of fluid after trips
- Gas cutting or decrease in mud weight
- Increase in pump speed or decrease in pump pressure

Prevention of Kick/Blowout

- Use high mud weight
- Use right type of mud and keep in good condition
- Check mud weight frequently
- Check fluid level frequently
- Add weight material evenly
- Do not add excessive weight reducing materials such as oil or water
- Trip slowly
- Keep hole clean to prevent swabbing
- Observe surface gas