

SKM 3413 - DRILLING ENGINEERING

Chapter 3 - Drilling Hydraulics

Assoc. Prof. Abdul Razak Ismail

Petroleum Engineering Dept. Faculty of Petroleum & Renewable Energy Eng. Universiti Teknologi Malaysia

innovative • entrepreneurial • global

ocw.utm.my

Contents

- Review of flow in pipes (*Fluid Mechanics*)
- Drilling mud flow (circulating) system
- Newtonian fluid flow calculations
- Bingham plastic fluid flow calculations
- Δp across bit nozzles
- Δp calculation for typical system

Review of flow In Pipes

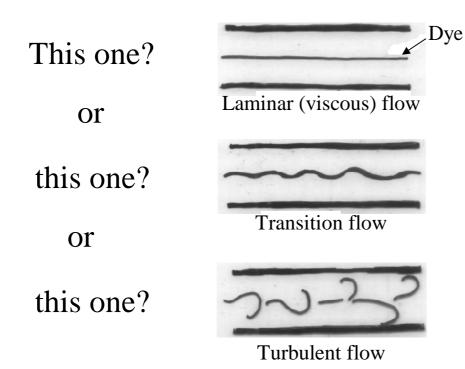
Real fluid flow is much complex compare to perfect fluid flow.

Between fluid particles

□ Shear stress <

Between fluid particles and pipe's wall μ fluid

- Energy equilibrium principles are used to solve the problems.
- Partial differential equation (Euler's equation) has no general solution to solve problems.
- Results from experiment (*analytical*) and semi-empirical method needs to be used to solve flow problems.
- □ There are 2 types of steady flow of real fluid exists:
 - Laminar flow
 - > Turbulent flow



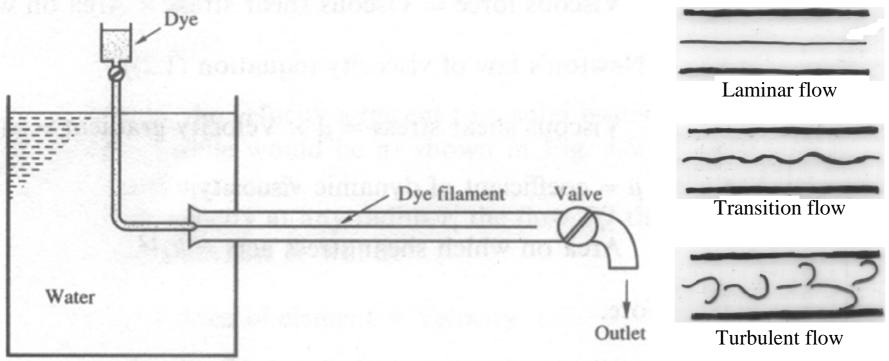
All three types of flow actually do occurred in real fluid flow.

 $\succ \text{ Laminar flow } \Rightarrow v \downarrow$

> Turbulent flow $\Rightarrow v \uparrow$

The problem is: what is $v \uparrow$ and $v \downarrow$.Why we need to know?

This phenomenon was first investigated in 1883 by <u>Osborne</u>
 <u>Reynolds</u> in an experiment which has a classic in fluid mechanic.



After a few experiments, he found out a mathematical relationship:

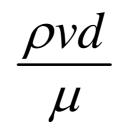
 $\frac{\rho v d}{\mu}$

ocw.utm.my

- □ This mathematical relationship can be used to determine the types of flow.
 - $-\frac{\rho v d}{\mu} < 2000 \qquad \text{laminar flow} \\ -2000 < \frac{\rho v d}{\mu} < 4000 \qquad \text{transition flow} \\ -\frac{\rho v d}{\mu} > 4000 \qquad \text{turbulent flow}$
- Subsequently until now, this mathematical relationship is known as *Reynolds number, Re (or* N_{Re}).

$$\operatorname{Re} = \frac{\rho v d}{\mu} \Rightarrow \operatorname{dimensionless}$$

- laminar flow : Re < 2000
- transition flow: 2000 < Re < 4000
- turbulent flow : Re > 4000



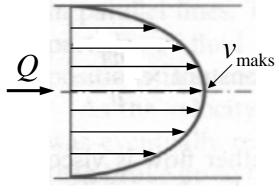
where:

$$\rho$$
 = fluid density
 v = fluid average velocity
 d = pipe inside diameter
 μ = fluid absolute viscosity

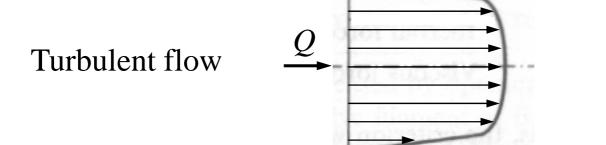
 \Box If kinematic viscosity, v, is inserted in the equation:

$$v = \frac{\mu}{\rho}$$
$$Re = \frac{vd}{v}$$

Laminar flow

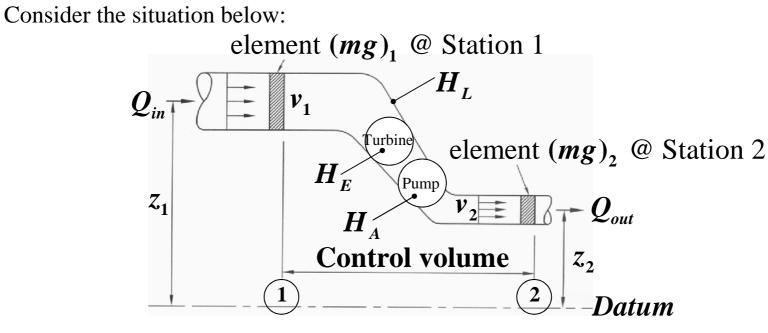


$$\overline{v} = v_{avg} = \frac{1}{2} v_{maks}$$
$$\overline{v} = v_{avg} = \frac{Q}{A}$$



$$\overline{v} = v_{avg} = \frac{Q}{A}$$

Mechanical Energy of a Flowing Fluid



The energy possessed by a flowing fluid consists of internal energy and energies due to pressure, velocity, and position

 $\begin{array}{l} energy \ at \\ section \ 1 \\ \end{array} + \begin{array}{l} energy \\ added \\ \end{array} - \begin{array}{l} energy \\ lost \\ \end{array} - \begin{array}{l} energy \\ extracted \\ \end{array} = \begin{array}{l} energy \ at \\ section \ 2 \\ \end{array}$

> This equation, for steady flow of incompressible fluids in which the change in internal energy is negligible, simplifies to

$$\left(\frac{p_1}{\gamma} + \frac{v_1^2}{2g} + z_1\right) + H_A - H_L - H_E = \left(\frac{p_2}{\gamma} + \frac{v_2^2}{2g} + z_2\right)$$

Energy Losses In Pipe

 \rightarrow **Def**.: Any energy losses in closed conduits due to friction, H_L .

- \succ This types of losses can be divided into 2 main categories:
 - Major losses, H_{L-major}, and
 Minor losses, H_{L-minor}.
- > From Bernoulli's equation:

$$\left(\frac{p_1}{\gamma} + \frac{v_1^2}{2g} + z_1\right) + H_A - H_L - H_E = \left(\frac{p_2}{\gamma} + \frac{v_2^2}{2g} + z_2\right)$$

 \triangleright Energy added to the system, H_A , is frequently due to pump fluid head, H_P , energy extracted, H_F , is frequently due to turbine fluid head, H_T , Bernoulli's equation can be simplify as:

$$\frac{p_1}{\gamma} + \frac{v_1^2}{2g} + z_1 + H_P = \frac{p_2}{\gamma} + \frac{v_2^2}{2g} + z_2 + H_T + H_{L-\text{major}} + H_{L-\text{minor}}$$

Major Losses In Pipe

- > *Def*.: The head loss due to friction in long, straight sections of pipe.
- > The losses do happen in pipe, either in laminar or turbulent flow.

a. Laminar flow

- > Problem solved analytically \rightarrow derived purely from mathematical relationship
- Hagen-Porseuille equation

$$\Delta p_f = \frac{32\,\mu v L}{d^2}$$

in the forms of head loss, H_L

$$H_L = \frac{32\,\mu v L}{\gamma d^2}$$

> Darcy-Weisbach equation by replacing $\text{Re} = \frac{\rho v d}{\mu}$ into Hagen-Porseuille equation $H_L = \frac{64}{\text{Re}} \frac{L}{d} \frac{v^2}{2g}$

b. Turbulent flow

From Darcy-Weisbach equation for laminar flow

$$H_L = \frac{64}{\text{Re}} \frac{L}{d} \frac{v^2}{2g}$$

$$H_L = f \frac{L}{d} \frac{v^2}{2g}$$

- Where, for laminar flow, $f = \frac{64}{\text{Re}}$ a simple mathematical relationship.
- For turbulent flow, f has to be solved empirically \rightarrow experiment need to be done.
- In laminar and turbulent flow, *f* is known as friction coefficient or friction factor.

Friction Factor

a. <u>Laminar flow</u>

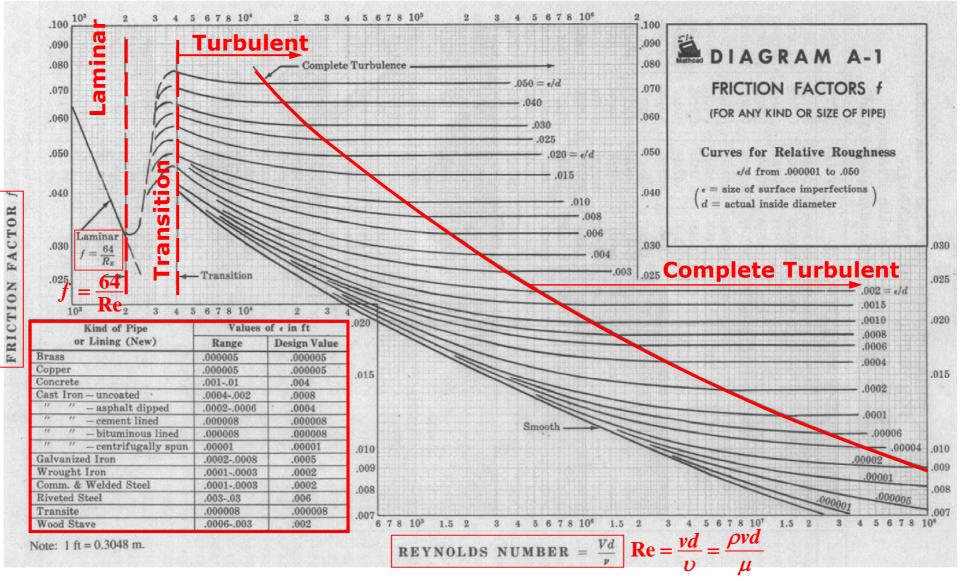
Darcy-Weisbach equation

$$H_L = f \frac{L}{d} \frac{v^2}{2g}$$
 where $f = \frac{64}{\text{Re}}$

b. <u>Turbulent flow</u>

- In the literature (from 1900's current date), there are many studies that have been conceded by various researchers.
 - Blasius's equation (1913)
 - von Karman's equation modified by Prandtl
 - Nikuradse's equation (for smooth and rough pipes)
 - Colebrook-White equation (1940's)
 - Moody
 - Barr's equation (1975)

Friction Factor (cont. 2)



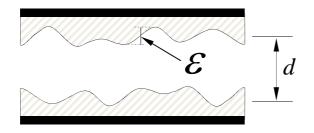
Moody Chart

Normal practice in determination of f

- 1. Calculate Re to determine the types of flow.
- 2. H_L calculation: used Darcy-Weisbach equation.

 $H_L = f \frac{L}{d} \frac{v^2}{2g}$

- 3. For laminar flow: $f = \frac{64}{\text{Re}}$
- 4. For turbulent flow:
 - a. Determine pipe relative roughness, $\frac{\varepsilon}{d}$ Where:
 - ε pipes absolute roughness
 - d pipe internal diameter



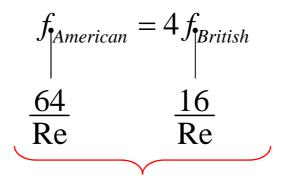
e is depend on pipe's material, normally is given in tabular forms.

Material (new)	Absolute roughness, <i>E</i>			
Water far (new)	ft	mm		
Riverted steel	0.003 - 0.03	0.9 - 9.0		
Concrete	0.001- 0.01	0.3 - 3.0		
Wood stave	0.0006 - 0.003	0.18 - 0.9		
Cast iron	0.00085	0.26		
Galvanized iron	0.0005	0.15		
Asphalted cast iron	0.0004	0.12		
Commercial steel or wrought iron	0.00015	0.045		
Drawn tubing	0.000005	0.0015		
Glass	0.0 (smooth)	0.0 (smooth)		

b. Obtain f from Moody chart, @ Re, $\frac{\mathcal{E}}{d}$

Attention

- 1. In this subject, SKM1043, the f that we are using, is the American friction factor, $f_{American}$.
- 2. The value of $f_{American}$ is different to the one that used by the British



needs to refer different Moody Chart

3. Sometimes: $\lambda = f_{American} = 4 f_{British}$

ocw.utm.my

Since the mud enters the drill string and leaves the annulus at essentially the same elevation, the only *pressure required* is to overcome the *frictional losses in the system*.
 Hence, the discharge pressure at the pump is defined by:

$$\Delta p_t = \Delta p_s + \Delta p_p + \Delta p_c + \Delta p_b + \Delta p_{ac} + \Delta p_{ap} \qquad \dots \dots (3.1)$$

Δp_t	=	pump discharge pressure
Δp_s	=	pressure loss in surface piping, standpipe, and mud hose
		1 • • 1 1 • 11 •

- Δp_p = pressure loss inside drill pipe
- Δp_c^p = pressure loss inside drill collars
- Δp_b = pressure loss across bit nozzles
- Δp_{ac} = pressure loss in annulus around drill collars
- Δp_{ap} = pressure loss in annulus around drill pipe

- The solution of Eq. (3.1) is rather tedious; separate calculations are needed for each section
- There are 4 different types of model used to calculate frictional pressure losses in mud circulating system:
 - Newtonian
 - Bingham plastic
 - Power-law
 - API Power-law
- Due to the limitation of the syllabus, Power-Law and API Power-Law models will not be discussed in this subject.
- All calculations will be focused on Newtonian and plastic fluid models.

Newtonian Fluid Flow Calculations

- Similar to generalized flow system approach, calculation of Δp for pipe flow requires a knowledge of which flow pattern pertains to the specific case, since different equations apply for each situation.
- > Definition of the existing flow pattern is given by a dimensionless quantity known as the Reynolds number (N_{Re}) :

$$N_{\text{Re}} = \text{Reynolds's number}$$

 $\overline{v} = \text{average velocity of flow, ft/sec}$
 $\rho = \text{fluid density, ppg}$
 $d = \text{pipe inside diameter, in.}$
 $\mu = \text{fluid viscosity, cp}$
 $q = \text{circulating volume, gal/min}$

ocw.utm.my

> Similar to generalized flow system approach, that if

- laminar flow $: N_{\text{Re}} < 2000$
- transition flow: $2000 < N_{\text{Re}} < 4000$
- turbulent flow : $N_{\text{Re}} > 4000$
- > The Δp in laminar flow is given by the Hagan-Poiseuille law; this, in practical units, is

 $\Delta p = \frac{f \rho L \overline{v}^2}{2}$

$$\Delta p = \frac{\mu L \overline{\nu}}{1,500d^2} \qquad \dots \dots (3.3)$$

where:

 $\Delta p = \text{laminar flow } \Delta p, \text{ lb/in}^2$

L =length of pipe, ft

> For turbulent flow, Fanning's equation applies:

..... (3.4)

- Δp = turbulent flow Δp , lb/in²
 - f = Fanning friction factor

- The friction factor f is a function of and pipe roughness, and has been evaluated experimentally for numerous materials (see Fig. 7.1)
- a. Calculate N_{Re} from Equation (3.2).
- b. If $N_{Re} < 2000$, use Equation (3.3) to calculate the pressure drop.
- c. If $N_{Re} > 2000$, use Equation (3.4). In this case the friction factor *f* is obtained from Figure 7.1 or its equivalent.

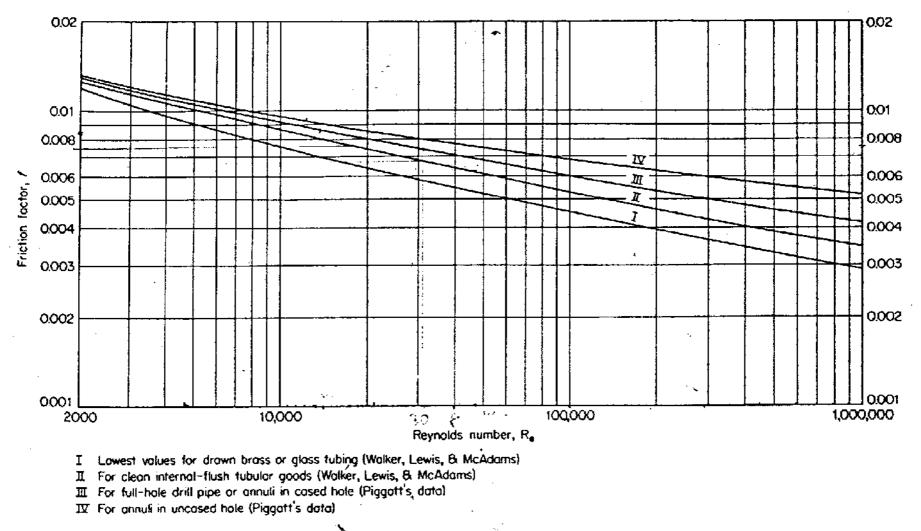


Fig. 7.1. Friction factor vs. Reynolds number for mud flow calculations. After Ormsby,¹³ courtesy API.

Plastic Fluid Flow Calculations

- Drilling fluids is non-Newtonian fluid
- Newtonian fluid equations must be altered for application to typical drilling mud systems

Surface Equipment Losses (Δp_s)

The surface equipment consist of <u>standpipe</u>, <u>hose</u>, <u>swivel</u>, <u>kelly</u> <u>joint</u>, and the <u>piping</u> between the pump and standpipe. In practice, there are only four types of surface equipment; each type is characterized by the dimensions of standpipe, kelly, rotary hose and swivel. Table 3.1 summarizes the four types of surface equipment.

	Standpipe		Hose		Swivel, etc.		Kelly		Eq. length,	
Туре	ID	Length	ID	Length	ID	Length	ID	Length	3.826" ID	E
1	3"	40 ft.	2.5"	45 ft.	2"	20 ft.	2.25"	40 ft.	2,600 ft.	2.5 x 10 ⁻⁴
2	3.5"	40 ft.	2.5"	55 ft.	2.5"	25 ft.	3.25"	40 ft.	946 ft.	9.6 x 10 ⁻⁵
3	4"	45 ft.	3"	55 ft.	2.5"	25 ft.	3.25"	40 ft.	610 ft.	5.3 x 10 ⁻⁵
4	4"	45 ft.	3"	55 ft.	3"	30 ft.	4"	40 ft.	424 ft.	4.2 x 10 ⁻⁵

Table 3.1: Types of surface equipment & value of constant E

To determine surface equipment losses (Δp_s):

Use the following formula:

$$\Delta p_s =$$
 surface pressure losses, psi

$$q = flow rate, gpm$$

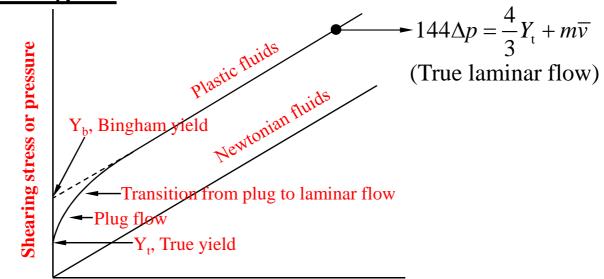
$$\rho_m = \text{mud density, ppg}$$

$$E = a$$
 constant depending on type of surface equipment used

$$\mu_p$$
 = mud plastic viscosity, cp

Fluid Flow Inside the Pipe

A. Laminar Flow Region



Rate of shear or velocity

Fig. 3.1: Flow behavior of plastic and Newtonian fluids.

$$144\Delta p = \frac{4}{3}Y_{\rm t} + m\overline{v}$$

$$44\Delta p = \text{pressure drop, lb/ft}^2$$

$$\frac{4}{3}Y_t = Y_b, \text{lb/ft}^2$$

$$m = \mu L/(1500d^2), \text{ slope of linear portion (from Eq. (3.3))}$$

For practical values of \overline{v} , the behavior of plastic fluids may be expressed as:

$$\Delta p = \frac{LY_{\rm b}}{300d} + \frac{\mu_{\rm p}\overline{\nu}L}{1500d^2}$$

$$\therefore \Delta p = \frac{L}{300d} \left(Y_{\rm b} + \frac{\mu_{\rm p}\overline{\nu}}{5d} \right) \qquad (3.6)$$

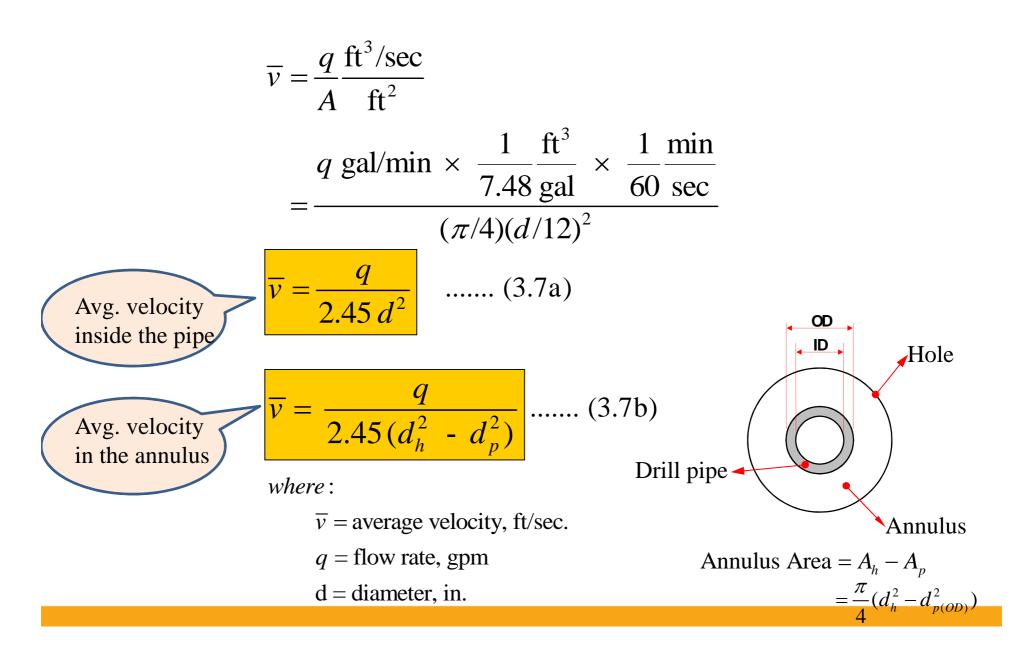
where:

 μ_p = plastic viscosity, cp. Y_b = yield point, lb/100ft².

 \succ Eq. (3.6) may be used in cases where laminar flow exists

Determination of flow characteristic (laminar or turbulent) is made by comparing the actual velocity with a calculated critical velocity

Average Velocity Calculation



Critical Velocity Calculation

If Eqs. (3.3) and (3.6) are equated, an equivalent Newtonian viscosity in terms of d, \overline{v}, μ_p and Y_b is obtained:

$$\mu = \frac{5dY_{\rm b}}{\overline{v}} + \mu_{\rm p}$$

Substituting the above Eq. for μ in the Reynolds's number of Eq. (3.2), equating the resulting equation to 2000, and solving for \bar{v} gives:

where:

 v_c = critical velocity, ft/sec, above which turbulent flow exists and below which the flow is laminar.

Eq. (3.8) assumes that turbulence occurs at $N_{Re} = 2000$. Therefore, if:

 $\overline{v} < v_c$, flow is laminar $\overline{v} > v_c$, flow is turbulent

B. <u>Turbulent Flow Region</u>

Before Fanning Eq. can be used, alteration to N_{Re} expression have to be done (after *Beck*, *Nuss & Dunn*)

$$\mu_t = \frac{\mu_p}{3.2} \qquad(3.9)$$

where:

 μ_t = turbulent viscosity of plastic fluids, cp

Substitution of μ_t , for μ in the general N_{Re} expression (Eq. (3.2)) gives:

$$N_{\rm Re} = \frac{928\rho \overline{v} d}{\mu_{\rm t}}$$
$$N_{\rm Re} = \frac{2,970\rho \overline{v} d}{\mu_{\rm p}} \qquad \dots \dots (3.10)$$

By using Fig. 7.1, determine fThis f may then be used in Eq. (3.4) for calculation of pressure

In summary, Δp calculation for plastic fluid flow systems can be done as follows:

- Calculate the average velocity, v
 , from Eq. (3.7a) or (3.7b)
 Calculate v_c from Eq. (3.8)
- (3) If $\overline{v} < v_c \rightarrow$ flow is laminar, Eq. (3.6) applies

(4) If $\overline{v} > v_c \rightarrow$ flow is turbulent, requiring:

- a. Calculation of N_{Re} from Eq. (3.10)
- b. Determination of f from Fig. 7.1 at the calculated for the conduit in question
- c. Calculation of pressure drop from Eq. (3.4)

Example 3.1

Mud is flowing through 4 1/2 inch OD, internal flush drill pipe. Calculate the frictional pressure drop per 1000 ft of pipe.

Mud properties

Mud density, $ ho_{ m m}$	=	10 lb/gal
Pipe ID	=	3.640 in.
Bingham yield, $Y_{\rm b}$	=	10 lb/100 ft ²
Circulating rate, q	=	400 gal/min
Plastic viscosity, $\mu_{\rm p}$	=	30 cp

ocw.utm.my

Eq. (3.7a):
$$\overline{v} = \frac{q}{2.45d^2}$$

Eq. (3.8): $v_c = \frac{1.08\mu_p + 1.08\sqrt{\mu_p^2 + 9.3\rho d^2 Y_b}}{\rho d}$

Solution 3.1

(1)
$$\overline{v} = \frac{400}{2.45(3.64)^2} = 12.3 \text{ ft/sec}$$

(2)
$$v_{\rm c} = \frac{(1.08)(30) + (1.08)\sqrt{(30)^2 + (9.3)(10)(3.64)^2(10)}}{(10)(3.64)} = 4.3 \text{ ft/sec}$$

(3) Since $\overline{v} > v_c$, flow is turbulent.

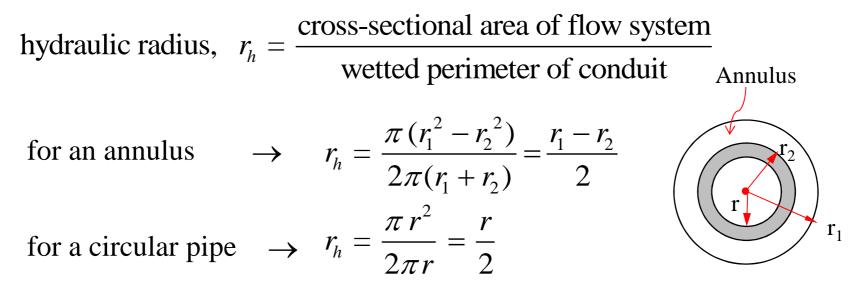
(a)
$$N_{\text{Re}} = \frac{(2,970)(10)(12.3)(3.64)}{30} = 44,300$$

(b)
$$f = 0.0062$$
 from Curve II, Fig. 3.1

(c)
$$\Delta p_p = \frac{(0.0062)(10)(1000)(12.3)^2}{(25.8)(3.64)} = 100 \text{ psi/1000 ft}$$

Hydraulically Equivalent Annulus Diameter

- For annular flow, it is necessary to use a hypothetical circular diameter, d_a , which is the hydraulic equivalent of the actual annular system
- The hydraulic radius is defined as:



• The frictional loss in an annulus is equal to the loss in a circular pipe having the same hydraulic radius; hence, in general terms:

$$r_e = r_1 - r_2$$
 or $d_e = d_1 - d_2$ (3.11)

where r_e and d_e are the hydraulically equivalent radius and diameter

ocw.utm.my

Pressure Drop Across Bit Nozzles

> Consider the diagram below for incompressible fluid:

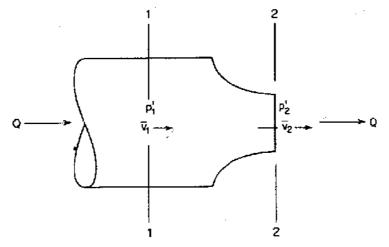


Fig. 3.2: Schematic sketch of incompressible fluid flowing through a converging tube or nozzle.

> Assuming steady state, adiabatic, and frictionless:

$$\frac{p_1}{\rho} + \frac{\overline{v_1}^2}{2g} = \frac{p_2}{\rho} + \frac{\overline{v_2}^2}{2g} \qquad \dots \dots \dots \dots (a)$$

where:

$$\mathcal{P}_1, \mathcal{P}_2 = \text{turbulent flow pressure drop, lb/ft}^2$$

 $\mathcal{P} = \text{density, lb/ft}^3$
 $\overline{v_1}, \overline{v_2} = \text{velocities at points 1 and 2, ft/sec}$

$$\frac{p_1}{w} + \frac{\overline{v_1}^2}{2g} = \frac{p_2}{w} + \frac{\overline{v_2}^2}{2g} \qquad \dots \dots (a)$$

or
$$\frac{\Delta p}{\rho} = \frac{\overline{v_2}^2 - \overline{v_1}^2}{2g}$$

> Practically, $\overline{v_2}^2 - \overline{v_1}^2 \cong \overline{v_2}^2$, therefore:
 $\overline{v_2}^2 = 2g \frac{\Delta p}{\rho} \qquad \dots \dots (b)$
> The ideal rate of flow, $q_i = A_2 \overline{v_2}$. The actual flow rate q is:
 $q = Cq_i \qquad \dots \dots (c)$

where *C* is the flow or nozzle coefficient for particular design.

By substituting Eq. (c) into Eq. (b), and rearranging it, the equation becomes:

$$\Delta p = \frac{\rho q^2}{2gC^2 A_2^2} \qquad(3.12)$$

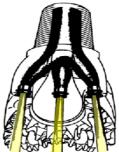
 \succ Altering Eq. (3.12) to practical units for mud flow, we:

$$\Delta p_b = \frac{q^2 \rho}{7,430 C^2 d_e^4} \qquad \dots \dots \dots (3.13)$$

where d_e = hydraulically equivalent nozzle diameter, in. The value of *C* is around 0.8 – 0.08

> The value of C is around 0.8 - 0.98.

Multiple Nozzles



- The calculation of Δp across a multiple nozzle bit may be simplified by substituting the sum of the nozzle areas for A in Equation (3.12).
- > For single nozzle:

$$\Delta p = \frac{\rho q^2}{2gC^2 A^2}$$

0

 \succ For several nozzles, each of area A_1 :

$$\Delta p_m = \frac{\rho q_1^2}{2gC^2 A_1^2}$$

For parallel flow,
$$q_1 = \frac{q}{n}$$
, where $n =$ number of nozzles.
therefore:
$$\frac{\Delta p_m}{\Delta p} = \frac{q_1^2}{q^2} \frac{A^2}{A_1^2} = \frac{q_1^2 A^2}{n^2 q_1^2 A_1^2}$$

Cross sectional area of flow, A, is defined as

$$\frac{A^2}{n^2 A_1^2} = 1$$

$$\therefore A^2 = n^2 A_1^2$$

$$A = nA_1 \qquad \dots \dots (3.14)$$

or

\succ Similarly, for use in Eq. (3.13)

$$\sqrt{nd^2}$$
 (3.15a)

> If the multiple nozzles vary in size,

$$d_e = \sqrt{ad_1^2 + bd_2^2 + \text{ etc.}}$$
 (3.15b)

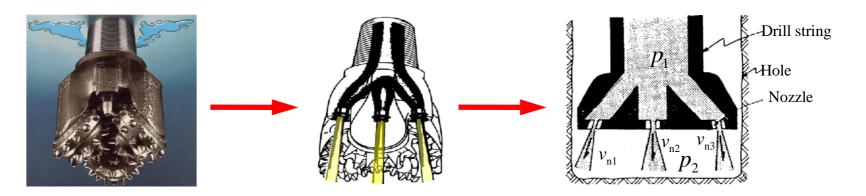
where:

- a = number of nozzles having diameter d_{l} .
- b = number of nozzles having diameter d_2 .
- d_e = hydraulically equivalent single nozzle diameter, in.

Example 3.2

A 10 lb/gal mud is being circulated at the rate of 500 gal/min. through a tri-cone bit having three 3/8 in. diameter jets. What is the pressure drop across the bit?

Solution 3.2



 d_e or $d = \sqrt{3(\frac{3}{8})^2} = 0.65$ in. (equivalent single nozzle diameter) Using Eq. (3.13): $(p_1 - p_2)$ or $\Delta p = \frac{(500)^2 (10)}{(7430)(0.95)^2 (0.65)^4} = 2,100$ psi

Pressure Drop Calculations for a Typical Systems Example 3.3

Operating Data

Depth = 6,000 ft (5,500 ft drill pipe, 500 ft drill collars) Drill pipe = 4 ¹/₂-in. internal flush, 16.6 lb/ft (ID = 3.826 in.) Drill collars = 6 ³/₄ in. (ID = 2.813 in.) Mud density, $\rho_m = 10$ lb/gal Plastic viscosity, $\mu_p = 30$ cp Bingham yield, $Y_b = 10$ lb/100ft² Bit = 7 7/8-in., 3 cone, jet rock bit Nozzle velocity required = at least 250 ft/sec through each nozzle (this value is obtained by a commonly applied rule of thumb). Assume C = 0.95 Surface equipment type = 2

What hydraulic (pump output) horsepower will be required for these conditions?

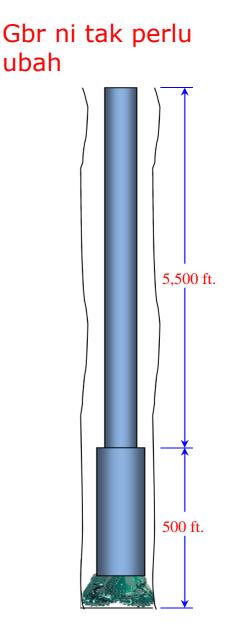
Solution 3.3

Circulation rate: This is obtained from the desired annular velocity necessary for proper hole cleaning (cutting removal).

Assume that this is a fast drilling, soft rock area and that <u>180 ft/min (3 ft/sec</u>) upward velocity based on a gauge hole is required (i.e. annular velocity around the drill pipe).

The flow rate , q is:

$$q = (\text{annulus area}) \times \text{velocity}$$
$$= 2.45(d_h^2 - d_p^2)\overline{\nu}$$
$$= 2.45 \left[\left(7\frac{7}{8}\right)^2 - \left(4\frac{1}{2}\right)^2 \right] (3)$$
$$= 307 \text{ gpm}$$



(a) <u>Surface equipment losses (Δp_s)</u> Eq. (3.16) $\Delta p_s = E \rho_m^{0.8} q^{1.8} \mu_p^{0.2}$ Surface equipment type 2 <u>Table 3.1</u> $E = 9.6 \times 10^{-5}$ $\therefore \Delta p_s = (9.6 \times 10^{-5})(10)^{0.8}(307)^{1.8}(30)^{0.2} = 36 \text{ psi}$

(b) <u>Pressure losses inside drill pipe</u> (Δp_p)

The average velocity inside the drill pipe:

$$\overline{v} = \frac{q}{2.45d^2} = \frac{307}{2.45(3.826)^2} = 8.56 \text{ ft/sec}$$

The critical velocity:

$$v_{\rm c} = \frac{1.08\mu_{\rm p} + 1.08\sqrt{\mu_{\rm p}^2 + 9.3\rho_{\rm m}d^2Y_{\rm b}}}{\rho_{\rm m}d}$$
$$= \frac{1.08(30) + 1.08\sqrt{(30)^2 + (9.3)(10)(3.826)^2(10)}}{(10)(3.826)}$$
$$= 4.25 \text{ ft/sec}$$

 $\overline{v} > v_c \implies \therefore$ turbulent flow (use Eq. 3.4)

Applying Eq. (3.4): $\Delta p_{\rm p} = \frac{f \rho L \overline{v}^2}{25.8 \, d} = \frac{(0.0066)(10)(5,500)(8.56)^2}{(25.8)(3.826)} = 269 \text{ psi}$

(c) <u>Pressure losses inside drill collar</u> (Δp_c)

The average velocity inside the drill collar:

$$\overline{v} = \frac{q}{2.45d^2} = \frac{307}{2.45(2.813)^2} = 15.84 \text{ ft/sec}$$

The critical velocity:

$$v_{\rm c} = \frac{1.08\mu_{\rm p} + 1.08\sqrt{\mu_{\rm p}^2 + 9.3\rho_{\rm m}d^2Y_{\rm b}}}{\rho_{\rm m}d}$$
$$= \frac{1.08(30) + 1.08\sqrt{(30)^2 + (9.3)(10)(2.813)^2(10)}}{(10)(2.813)}$$
$$= 4.64 \text{ ft/sec}$$

 $\overline{v} > v_c \implies \therefore$ turbulent flow (use Eq. 3.4)

Applying Eqn. (3.4): $\Delta p_c = \frac{f \rho L \overline{v}^2}{25.8 d} = \frac{(0.0062)(10)(500)(15.84)^2}{(25.8)(2.813)} = 107 \text{ psi}$

(d) <u>Pressure losses through bit</u> (Δp_b)

Three nozzles (one for each cone) will be used, hence 1/3 q will flow through each. For \overline{v} = at least 250 ft/sec through each nozzle,

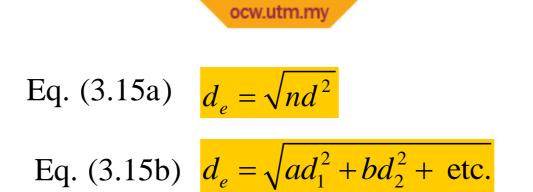
$$d = \sqrt{\frac{\frac{1}{3}q}{2.45\overline{\nu}}} = \sqrt{\frac{307/3}{(2.45)(250)}} = 0.41 \text{ in.}$$

Nozzle sizes are sell in multiples of 1/32 in. Therefore, the nearest stock nozzle available is 13/32 in. (i.e. 0.40625 in.):

 \therefore nozzle diameter of $\frac{13}{32}$ in. is chosen

This nozzle allows an <u>actual</u> velocity of:

$$\overline{v} = \frac{102}{2.45\left(\frac{13}{32}\right)^2} = 252 \text{ ft/sec}$$



Using Eq. (3.15) or (3.15a), the <u>actual</u> nozzle diameter:

$$d = \sqrt{3(\frac{13}{32})^2} = 0.704$$
 in.
Eq. (3.13) $\Delta p_{\rm b} = \frac{q^2 \rho_{\rm m}}{7,430C^2 d^4}$

 \therefore Pressure drop across the bit, $\Delta p_{\rm b}$:

$$\Delta p_{\rm b} = \frac{(307)^2 (10)}{7,430(0.95)^2 (0.704)^4} = 573 \text{ psi}$$

(e) <u>Pressure losses around drill collar</u> (Δp_{ac})

The average velocity around the drill collar:

$$\overline{v} = \frac{307}{(2.45) \left[(7\frac{7}{8})^2 - (6\frac{3}{4})^2 \right]} = 7.62 \text{ ft/sec}$$

The hydraulically equivalent diameter of the annulus:

$$d_a = d_1 - d_2$$

 $d = 7\frac{7}{8} - 6\frac{3}{4} = 1\frac{1}{8}$ in.

The critical velocity:

$$v_{\rm c} = \frac{1.08\,(30) + 1.08\sqrt{(30)^2 + (9.3)(10)(1\frac{1}{8})^2(10)}}{(10)(1\frac{1}{8})} = 7.26 \text{ ft/sec}$$

 $\overline{v} > v_c \implies \therefore$ turbulent flow (use Eq. 3.4)

Applying Eqn. (3.4): $\Delta p_{\rm ac} = \frac{f \rho L \overline{v}^2}{25.8 \ d} = \frac{(0.0098)(10)(500)(7.62)^2}{(25.8)(1\frac{1}{8})} = 98 \ \text{psi}$

(f) <u>Pressure losses around drill pipe</u> (Δp_{ap})

The average velocity around the drill collar (as assume/given earlier): $\overline{v} = 3$ ft/sec

The hydraulically equivalent diameter of the annulus:

$$d_a = d_1 - d_2$$

$$d = 7\frac{7}{8} - 4\frac{1}{2} = 3\frac{3}{8}$$
 in.

The critical velocity:

$$v_{\rm c} = \frac{1.08(30) + 1.08\sqrt{(30)^2 + (9.3)(10)(3\frac{3}{8})^2(10)}}{(10)(3\frac{3}{8})} = 4.39 \text{ ft/sec}$$

$$\overline{v} < v_c \implies \therefore \text{ laminar flow (use Eq. 3.6)} \quad \Delta p = \frac{L}{300d} \left(Y_b + \frac{\mu_p \overline{v}}{5d} \right)$$
$$\therefore \quad \Delta p_{ap} = \frac{5,500}{300 \left(3\frac{3}{8}\right)} \left[10 + \frac{30(3)}{5(3\frac{3}{8})} \right] = 83 \text{ psi}$$

(g) <u>The total pressure drop in the system</u> (Δp_t)

 $\Delta p_{\rm t} = 36 + 269 + 107 + 573 + 98 + 83 \cong 1,166 \text{ psi}$

(h) Horsepower output at the pump

$$HP = \frac{q \times \Delta p}{1,714 \times \eta_v \times \eta_m} \quad \dots \dots \quad (3.17)$$

where:

q =flow rate, gpm

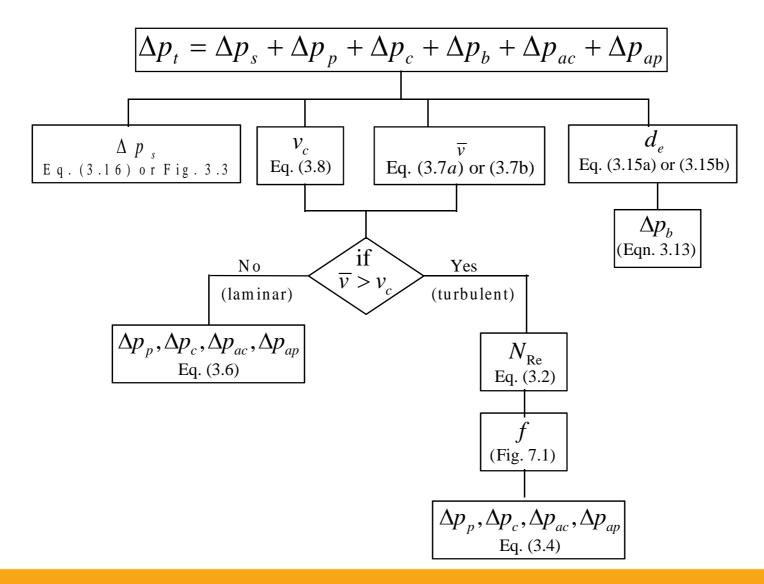
 η_v = volumetric efficiency

 η_m = mechanical efficiency

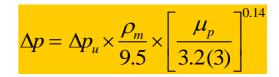
Assuming volumetric and mechanical efficiencies of the pump are 90% and 85% respectively:

$$\therefore HP = \frac{307 \ (1,166)}{1,714 \ (0.90) \ (0.85)} = 273 \ horsepower$$

Bingham Plastic Model: Calculation Steps



Example 3.4



Using a data as in Example 3.3, calculate the circulating pressure required.

Solution 3.4

From Example 3.3: q = 307 gpm, bit = 3 13/32 in. nozzles

(a) Surface equipment losses (Δp_s)

$$q = 307 \text{ gpm}$$
Curve type 2
$$\xrightarrow{\text{Fig. 7.3}} \Delta p_u = 27 \text{ psi}$$

$$\therefore \Delta p_s = 27 \times \frac{10}{9.5} \times \left[\frac{30}{3.2(3)}\right]^{0.14} = 33 \text{ psi}$$
(b) Pressure losses inside drill pipe (Δp_p)
 $q = 307 \text{ gpm}$
Curve 7
$$\xrightarrow{\text{Fig. 7.5 (for 4.5" d/p)}} \Delta p_u = \frac{32}{1,000} \times 5,500 = 176 \text{ psi}$$

$$\therefore \Delta p_p = 176 \times \frac{10}{9.5} \times \left[\frac{30}{3.2(3)}\right]^{0.14} = 217 \text{ psi}$$

$$\Delta p = \Delta p_u \times \frac{\rho_m}{9.5} \times \left[\frac{\mu_p}{3.2(3)}\right]^{0.14}$$

(c) <u>Pressure losses inside drill collar</u> (Δp_c)

$$q = 307 \text{ gpm}$$

Curve 2 ³/₄ bore
$$\int \frac{\text{Fig. 7.7}}{(\text{assume ID} = 2^{3}/4")} \Delta p_u = \frac{15}{100} \times 500 = 75 \text{ psi}$$
$$\therefore \Delta p_c = 75 \times \frac{10}{9.5} \times \left[\frac{30}{3.2(3)}\right]^{0.14} = 93 \text{ psi}$$

(d) Pressure losses through bit
$$(\Delta p_b)$$

 $q = 307 \text{ gpm}$
 $3 - \frac{13}{32}^{"} \text{ nozzle}$ $\begin{cases} \text{Fig. 7.9} \\ \text{(no viscosity effect)} \end{cases} \Delta p_u = 550 \text{ psi}$
 $\therefore \Delta p_b = 550 \times \frac{10}{9.5} = 579 \text{ psi}$

56

$$\Delta p = \Delta p_u \times \frac{\rho_m}{9.5} \times \left[\frac{\mu_p}{3.2(3)}\right]^{0.14}$$

(e) <u>Pressure losses around drill collar</u> (Δp_{ac})

$$q = 307 \text{ gpm} \\ 6^{3}/4 \text{ drill collar} \end{cases} \xrightarrow{\text{Fig. 7.10}} \Delta p_{u} = \frac{25}{100} \times 500 = 125 \text{ psi}$$

$$\therefore \Delta p_{ac} = 125 \times \frac{10}{9.5} \times \left[\frac{30}{3.2(3)}\right]^{0.14} = 154 \text{ psi}$$

(f) <u>Pressure losses around drill pipe</u> (Δp_{ap}) q = 307 gpm $4 \frac{1}{2} \text{ drill pipe}$ $\xrightarrow{\text{Fig. 7.10}}_{\text{(bit size = 77/8'')}} \Delta p_u = \frac{1.4}{100} \times 5,500 = 77 \text{ psi}$ $\therefore \Delta p_{ap} = 77 \times \frac{10}{9.5} \times \left[\frac{30}{3.2(3)}\right]^{0.14} = 95 \text{ psi}$

(g) <u>The total pressure drop in the system</u> (Δp_t)

$$\Delta p_{\rm t} = 33 + 217 + 107 + 579 + 154 + 95 \cong 1,185 \text{ psi}$$

Comparison of Δp Calculation Methods

System component	Plastic flow calculation (psi)	Hughes Tools Co. charts (psi)
Surface connections, Δp_s	36	33
Inside drill pipe, Δp_p	269	217
Inside drill collar, ∆p _c	107	107
Bit nozzles, Δp_b	573	579
Outside drill collar, Δp_{ac}	98	154
Outside drill pipe, Δp_{ap}	83	95
Total circulating pressure, ∆p _t	1,166	1,185

Additional Information

- Besides Newtonian and Bingham Plastic Models, there are several other model used to predict pressure losses in mud circulating systems.
- ➢ Generally, each model is based on a set of assumptions which cannot be completely fulfilled in any drilling situation.
- Power law, Herschel-Bulkley (Yield Power Law @ API Power Law) models are the most widely used in the oil industry.
- > Table 3.3 shows a summary of pressure loss equations