SKM 3413 - DRILLING ENGINEERING

Chapter 3 - Drilling Hydraulics

Assoc. Prof. Abdul Razak Ismail

Petroleum Engineering Dept.
Faculty of Petroleum \& Renewable Energy Eng.
Universiti Teknologi Malaysia

Contents

- Review of flow in pipes (Fluid Mechanics)
- Drilling mud flow (circulating) system
- Newtonian fluid flow calculations
- Bingham plastic fluid flow calculations
- $\Delta \mathrm{p}$ across bit nozzles
- $\Delta \mathrm{p}$ calculation for typical system

Review of flow In Pipes

\square Real fluid flow is much complex compare to perfect fluid flow.

Energy equilibrium principles are used to solve the problems.
[Partial differential equation (Euler's equation) has no general solution to solve problems.
Results from experiment (analytical) and semi-empirical method needs to be used to solve flow problems.
\square There are 2 types of steady flow of real fluid exists:
$>$ Laminar flow
$>$ Turbulent flow

\square All three types of flow actually do occurred in real fluid flow.
$>$ Laminar flow $\Rightarrow v \downarrow$
$>$ Turbulent flow $\Rightarrow v \uparrow$
\square The problem is: what is $v \uparrow$ and $v \downarrow$. Why we need to know?

This phenomenon was first investigated in 1883 by Osborne Reynolds in an experiment which has a classic in fluid mechanic.

\square After a few experiments, he found out a mathematical relationship:
$\underline{\rho v d}$
μ

This mathematical relationship can be used to determine the types of flow.
$-\frac{\rho v d}{\mu}<2000 \quad$ laminar flow
$-2000<\frac{\rho v d}{\mu}<4000$ transition flow
$-\frac{\rho v d}{\mu}>4000 \quad$ turbulent flow

- Subsequently until now, this mathematical relationship is known as Reynolds number, Re (or $N_{R e}$).

$$
\operatorname{Re}=\frac{\rho v d}{\mu} \Rightarrow \text { dimensionless }
$$

- laminar flow : $\operatorname{Re}<2000$
- transition flow: $2000<\operatorname{Re}<4000$
- turbulent flow: $\operatorname{Re}>4000$
where:

$\underline{\rho v d}$
 μ

$\rho=$ fluid density
$v=$ fluid average velocity
$d=$ pipe inside diameter
$\mu=$ fluid absolute viscosity
\square If kinematic viscosity, v, is inserted in the equation:

$$
\begin{aligned}
v & =\frac{\mu}{\rho} \\
\operatorname{Re} & =\frac{v d}{v}
\end{aligned}
$$

\square Fluid velocity profile in a pipe:

Mechanical Energy of a Flowing Fluid

> Consider the situation below:

$>$ The energy possessed by a flowing fluid consists of internal energy and energies due to pressure, velocity, and position

$$
\begin{aligned}
& \text { energy at at } \\
& \text { section } 1
\end{aligned}+\frac{\text { energy }}{\text { added }}-\underset{\text { lost }}{\text { energy }}-\underset{\text { extracted }}{\text { energy }}=\frac{\text { energy at }}{\text { section } 2}
$$

$>$ This equation, for steady flow of incompressible fluids in which the change in internal energy is negligible, simplifies to

$$
\left(\frac{p_{1}}{\gamma}+\frac{v_{1}^{2}}{2 g}+z_{1}\right)+H_{A}-H_{L}-H_{E}=\left(\frac{p_{2}}{\gamma}+\frac{v_{2}^{2}}{2 g}+z_{2}\right)
$$

Energy Losses In Pipe

$>$ Def.: Any energy losses in closed conduits due to friction, H_{L}.
$>$ This types of losses can be divided into 2 main categories:

- Major losses, $H_{L-m a j o r}$, and
- Minor losses, $H_{L-m i n o r}$.
$>$ From Bernoulli's equation:

$$
\left(\frac{p_{1}}{\gamma}+\frac{v_{1}^{2}}{2 g}+z_{1}\right)+H_{A}-H_{L}-H_{E}=\left(\frac{p_{2}}{\gamma}+\frac{v_{2}^{2}}{2 g}+z_{2}\right)
$$

$>$ Energy added to the system, H_{A}, is frequently due to pump fluid head, H_{P}, energy extracted, H_{E}, is frequently due to turbine fluid head, H_{T}, Bernoulli's equation can be simplify as:

$$
\frac{p_{1}}{\gamma}+\frac{v_{1}^{2}}{2 g}+z_{1}+H_{P}=\frac{p_{2}}{\gamma}+\frac{v_{2}^{2}}{2 g}+z_{2}+H_{T}+H_{L-\text { major }}+H_{L-\text { minor }}
$$

Major Losses In Pipe

$>$ Def.: The head loss due to friction in long, straight sections of pipe.
$>$ The losses do happen in pipe, either in laminar or turbulent flow.
a. Laminar flow
$>$ Problem solved analytically \rightarrow derived purely from mathematical relationship
> Hagen-Porseuille equation

$$
\Delta p_{f}=\frac{32 \mu v L}{d^{2}}
$$

in the forms of head loss, H_{L}

$$
H_{L}=\frac{32 \mu v L}{\gamma d^{2}}
$$

$>$ Darcy-Weisbach equation by replacing $\operatorname{Re}=\frac{\rho v d}{\mu}$ into Hagen-Porseuille equation

$$
H_{L}=\frac{64}{\operatorname{Re}} \frac{L}{d} \frac{v^{2}}{2 g}
$$

b. Turbulent flow

> From Darcy-Weisbach equation for laminar flow

$$
\begin{aligned}
H_{L} & =\frac{64}{\operatorname{Re}} \frac{L}{d} \frac{v^{2}}{2 g} \\
H_{L} & =f \frac{L}{d} \frac{v^{2}}{2 g}
\end{aligned}
$$

- Where, for laminar flow, $\left.f=\frac{64}{\operatorname{Re}}\right\}$ a simple mathematical relationship.
- For turbulent flow, f has to be solved empirically \rightarrow experiment need to be done.
- In laminar and turbulent flow, f is known as friction coefficient or friction factor.

Friction Factor

a. Laminar flow

- Darcy-Weisbach equation

$$
H_{L}=f \frac{L}{d} \frac{v^{2}}{2 g} \quad \text { where } f=\frac{64}{\operatorname{Re}}
$$

b. Turbulent flow

> In the literature (from 1900's - current date), there are many studies that have been conceded by various researchers.

- Blasius's equation (1913)
- von Karman's equation modified by Prandtl
- Nikuradse's equation (for smooth and rough pipes)
- Colebrook-White equation (1940's)
- Moody
- Barr's equation (1975)

Friction Factor (cont. 2)

Moody Chart

Normal practice in determination of f

1. Calculate Re to determine the types of flow.
2. H_{L} calculation: used Darcy-Weisbach equation.
$H_{L}=f \frac{L}{d} \frac{v^{2}}{2 g}$
3. For laminar flow: $f=\frac{64}{\mathrm{Re}}$
4. For turbulent flow:
a. Determine pipe relative roughness, $\frac{\varepsilon}{d}$ Where:
ε - pipes absolute roughness
d - pipe internal diameter

e is depend on pipe's material, normally is given in tabular forms.

Material (new)	Absolute roughness, $\boldsymbol{\varepsilon}$	
	$\mathbf{f t}$	$\mathbf{m m}$
Riverted steel	$0.003-0.03$	$0.9-9.0$
Concrete	$0.001-0.01$	$0.3-3.0$
Wood stave	$0.0006-0.003$	$0.18-0.9$
Cast iron	0.00085	0.26
Galvanized iron	0.0005	0.15
Asphalted cast iron	0.0004	0.12
Commercial steel or wrought iron	0.00015	0.045
Drawn tubing	0.000005	0.0015
Glass	0.0 (smooth)	0.0 (smooth)

b. Obtain f from Moody chart, @ Re, $\frac{\varepsilon}{d}$

Attention

1. In this subject, SKM1043, the f that we are using, is the American friction factor, $f_{\text {American }}$.
2. The value of $f_{\text {American }}$ is different to the one that used by the British

3. Sometimes: $\lambda=f_{\text {American }}=4 f_{\text {British }}$
$>$ Since the mud enters the drill string and leaves the annulus at essentially the same elevation, the only pressure required is to overcome the frictional losses in the system.
$>$ Hence, the discharge pressure at the pump is defined by:

$$
\begin{equation*}
\Delta p_{t}=\Delta p_{s}+\Delta p_{p}+\Delta p_{c}+\Delta p_{b}+\Delta p_{a c}+\Delta p_{a p} \tag{3.1}
\end{equation*}
$$

where:
$\Delta p_{t}=$ pump discharge pressure
$\Delta p_{s}=$ pressure loss in surface piping, standpipe, and mud hose
$\Delta p_{p}=$ pressure loss inside drill pipe
$\Delta p_{c}=$ pressure loss inside drill collars
$\Delta p_{b}=$ pressure loss across bit nozzles
$\Delta p_{a c}=$ pressure loss in annulus around drill collars
$\Delta p_{a p}=$ pressure loss in annulus around drill pipe
> The solution of Eq. (3.1) is rather tedious; separate calculations are needed for each section
> There are 4 different types of model used to calculate frictional pressure losses in mud circulating system:

- Newtonian
- Bingham plastic
- Power-law
- API Power-law
$>$ Due to the limitation of the syllabus, Power-Law and API Power-Law models will not be discussed in this subject.
$>$ All calculations will be focused on Newtonian and plastic fluid models.

Newtonian Fluid Flow Calculations

$>$ Similar to generalized flow system approach, calculation of Δp for pipe flow requires a knowledge of which flow pattern pertains to the specific case, since different equations apply for each situation.
$>$ Definition of the existing flow pattern is given by a dimensionless quantity known as the Reynolds number ($N_{R e}$):
where:

$$
\begin{equation*}
N_{\mathrm{Re}}=\frac{928 \rho \bar{v} d}{\mu} \tag{3.2}
\end{equation*}
$$

$$
\begin{aligned}
N_{\mathrm{Re}} & =\text { Reynolds's number } \\
\bar{v} & =\text { average velocity of flow, } \mathrm{ft} / \mathrm{sec} \\
\rho & =\text { fluid density, ppg } \\
d & =\text { pipe inside diameter, in } \\
\mu & =\text { fluid viscosity, } \mathrm{cp} \\
q & =\text { circulating volume, } \mathrm{gal} / \mathrm{min}
\end{aligned}
$$

$>$ Similar to generalized flow system approach, that if

- laminar flow : $N_{\mathrm{Re}}<2000$
- transition flow: $2000<N_{\mathrm{Re}}<4000$
- turbulent flow : $N_{\mathrm{Re}}>4000$
$>$ The Δp in laminar flow is given by the Hagan-Poiseuille law; this, in practical units, is
where:

$$
\begin{equation*}
\Delta p=\frac{\mu L \bar{v}}{1,500 d^{2}} \tag{3.3}
\end{equation*}
$$

$$
\begin{aligned}
\Delta p & =\text { laminar flow } \Delta p, \mathrm{lb} / \mathrm{in}^{2} \\
L & =\text { length of pipe, } \mathrm{ft}
\end{aligned}
$$

$>$ For turbulent flow, Fanning's equation applies:
where:

$$
\Delta p=\frac{f \rho L \bar{v}^{2}}{25.8 d}
$$

$\Delta p=$ turbulent flow $\Delta p, \mathrm{lb} / \mathrm{in}^{2}$
$f=$ Fanning friction factor
$>$ The friction factor f is a function of and pipe roughness, and has been evaluated experimentally for numerous materials (see Fig. 7.1)
$>\Delta p$ calculation for Newtonian fluid flow systems in the following manner:
a. Calculate $N_{R e}$ from Equation (3.2).
b. If $N_{R e}<2000$, use Equation (3.3) to calculate the pressure drop.
c. If $N_{R e}>2000$, use Equation (3.4). In this case the friction factor f is obtained from Figure 7.1 or its equivalent.

I Lowest volues for drawn bross or glass tubing (Walker, Lewis, B McAdarns)
II For cheon internal-flush tubulor goods (Walker, Lewis, Q McAdams)
III For full-hole drill pipe or annuli in cosed thole (Piggott's, data)
IV For annuli in uncosed hole (Piggatt's dota)
Fig. 7.1. Friction factor vs. Reynolds number for mud fow calculations. After Ormsby, ${ }^{13}$ courtesy API.

Plastic Fluid Flow Calculations

$>$ Drilling fluids is non-Newtonian fluid
$>$ Newtonian fluid equations must be altered for application to typical drilling mud systems

Surface Equipment Losses (Δp_{s})

- The surface equipment consist of standpipe, hose, swivel, kelly joint, and the piping between the pump and standpipe.
- In practice, there are only four types of surface equipment; each type is characterized by the dimensions of standpipe, kelly, rotary hose and swivel. Table 3.1 summarizes the four types of surface equipment.

Table 3.1: Types of surface equipment $\&$ value of constant E

Type	Standpipe		Hose		Swivel, etc.		Kelly		Eq. length,3.826" ID	E
	ID	Length	ID	Length	ID	Length	ID	Length		
1	$3 "$	40 ft .	2.5"	45 ft .	2"	20 ft .	2.25"	40 ft .	2,600 ft.	2.5×10^{-4}
2	$3.5 "$	40 ft .	2.5"	55 ft .	2.5"	25 ft .	$3.25 "$	40 ft .	946 ft .	9.6×10^{-5}
3	4"	45 ft .	$3 "$	55 ft .	2.5"	25 ft .	3.25 "	40 ft .	610 ft .	5.3×10^{-5}
4	4"	45 ft .	$3 "$	55 ft .	$3 "$	30 ft .	$4 "$	40 ft .	424 ft .	4.2×10^{-5}

To determine surface equipment losses (Δp_{s}):

Use the following formula:

$$
\begin{equation*}
\Delta p_{s}=E \rho_{m}^{0.8} q^{1.8} \mu_{p}^{0.2} \tag{3.5}
\end{equation*}
$$

where:
$\Delta p_{s}=$ surface pressure losses, psi
$\mathrm{q}=$ flow rate, gpm
$\rho_{m}=$ mud density, ppg
$E=$ a constant depending on type of surface equipment used
$\mu_{p}=$ mud plastic viscosity, cp

Fluid Flow Inside the Pipe

A. Laminar Flow Region

Fig. 3.1: Flow behavior of plastic and Newtonian fluids.

$$
144 \Delta p=\frac{4}{3} Y_{\mathrm{t}}+m \bar{v}
$$

where:

$$
144 \Delta p=\text { pressure drop, } \mathrm{lb} / \mathrm{ft}^{2}
$$

$$
\begin{aligned}
\frac{4}{3} Y_{t} & =Y_{b}, \mathrm{lb} / \mathrm{ft}^{2} \\
m & =\mu L /\left(1500 d^{2}\right) \text {, slope of linear portion (from Eq. (3.3)) }
\end{aligned}
$$

$>$ For practical values of \bar{v}, the behavior of plastic fluids may be expressed as:

$$
\begin{align*}
& \Delta p=\frac{L Y_{\mathrm{b}}}{300 d}+\frac{\mu_{\mathrm{p}} \bar{v} L}{1500 d^{2}} \\
\therefore & \Delta p=\frac{L}{300 d}\left(Y_{\mathrm{b}}+\frac{\mu_{\mathrm{p}} \bar{v}}{5 d}\right) \quad \ldots \text { (3.6) } \tag{3.6}
\end{align*}
$$

where:

$$
\begin{aligned}
\mu_{p} & =\text { plastic viscosity }, \mathrm{cp} . \\
Y_{b} & =\text { yield point, } \mathrm{lb} / 100 \mathrm{ft}^{2} .
\end{aligned}
$$

$>$ Eq. (3.6) may be used in cases where laminar flow exists
$>$ Determination of flow characteristic (laminar or turbulent) is made by comparing the actual velocity with a calculated critical velocity

Average Velocity Calculation

Critical Velocity Calculation

- If Eqs. (3.3) and (3.6) are equated, an equivalent Newtonian viscosity in terms of d, \bar{v}, μ_{p} and Y_{b} is obtained:

$$
\mu=\frac{5 d Y_{\mathrm{b}}}{\bar{v}}+\mu_{\mathrm{p}}
$$

- Substituting the above Eq. for μ in the Reynolds's number of Eq. (3.2), equating the resulting equation to 2000 , and solving for \bar{v} gives:
where:

$$
\begin{equation*}
v_{\mathrm{c}}=\frac{1.08 \mu_{\mathrm{p}}+1.08 \sqrt{\mu_{\mathrm{p}}^{2}+9.3 \rho d^{2} Y_{\mathrm{b}}}}{\rho d} \tag{3.8}
\end{equation*}
$$

$v_{\mathrm{c}}=$ critical velocity, $\mathrm{ft} / \mathrm{sec}$, above which turbulent flow exists and below which the flow is laminar.

- Eq. (3.8) assumes that turbulence occurs at $N_{R e}=2000$. Therefore, if:

$$
\begin{aligned}
& \bar{v}<v_{\mathrm{c}}, \text { flow is laminar } \\
& \bar{v}>v_{\mathrm{c}}, \text { flow is turbulent }
\end{aligned}
$$

B. Turbulent Flow Region

- Before Fanning Eq. can be used, alteration to $N_{R e}$ expression have to be done (after Beck, Nuss \& Dunn)

$$
\begin{equation*}
\mu_{t}=\frac{\mu_{p}}{3.2} \tag{3.9}
\end{equation*}
$$

where:

$$
\mu_{t}=\text { turbulent viscosity of plastic fluids, } \mathrm{cp}
$$

- Substitution of μ_{t}, for μ in the general $N_{R e}$ expression (Eq. (3.2)) gives:

$$
\begin{align*}
& N_{\mathrm{Re}}=\frac{928 \rho \bar{v} d}{\mu_{\mathrm{t}}} \\
& N_{\mathrm{Re}}=\frac{2,970 \rho \bar{v} d}{\mu_{\mathrm{p}}} \tag{3.10}
\end{align*}
$$

- By using Fig. 7.1, determine f
- This f may then be used in Eq. (3.4) for calculation of pressure

In summary, Δp calculation for plastic fluid flow systems can be done as follows:
(1) Calculate the average velocity, \bar{v}, from Eq. (3.7a) or (3.7b)
(2) Calculate $\boldsymbol{v}_{\boldsymbol{c}}$ from Eq. (3.8)
(3) If $\bar{v}<v_{c} \rightarrow$ flow is laminar, Eq. (3.6) applies
(4) If $\bar{v}>v_{c} \rightarrow$ flow is turbulent, requiring:
a. Calculation of $\boldsymbol{N}_{\boldsymbol{R} e}$ from Eq. (3.10)
b. Determination of f from Fig. 7.1 at the calculated for the conduit in question
c. Calculation of pressure drop from Eq. (3.4)

Example 3.1

Mud is flowing through $41 / 2$ inch OD, internal flush drill pipe. Calculate the frictional pressure drop per 1000 ft of pipe.

```
Mud properties
    Mud density, \(\rho_{\mathrm{m}}=10 \mathrm{lb} / \mathrm{gal}\)
    Pipe ID \(=3.640 \mathrm{in}\).
    Bingham yield, \(Y_{\mathrm{b}}=10 \mathrm{lb} / 100 \mathrm{ft}^{2}\)
    Circulating rate, \(q=400 \mathrm{gal} / \mathrm{min}\)
    Plastic viscosity, \(\mu_{\mathrm{p}}=30 \mathrm{cp}\)
```


Solution 3.1

Eq. (3.7a): $\bar{v}=\frac{q}{2.45 d^{2}}$

$$
E q .(3.8): v_{\mathrm{c}}=\frac{1.08 \mu_{\mathrm{p}}+1.08 \sqrt{\mu_{\mathrm{p}}^{2}+9.3 \rho d^{2} Y_{\mathrm{b}}}}{\rho d}
$$

(1) $\bar{v}=\frac{400}{2.45(3.64)^{2}}=12.3 \mathrm{ft} / \mathrm{sec}$
(2) $\quad v_{\mathrm{c}}=\frac{(1.08)(30)+(1.08) \sqrt{(30)^{2}+(9.3)(10)(3.64)^{2}(10)}}{(10)(3.64)}=4.3 \mathrm{ft} / \mathrm{sec}$
(3) Since $\bar{v}>v_{c}$, flow is turbulent.
(a) $N_{\mathrm{Re}}=\frac{(2,970)(10)(12.3)(3.64)}{30}=44,300$
(b) $f=0.0062$ from Curve II, Fig. 3.1
(c) $\Delta p_{p}=\frac{(0.0062)(10)(1000)(12.3)^{2}}{(25.8)(3.64)}=100 \mathrm{psi} / 1000 \mathrm{ft}$

Hydraulically Equivalent Annulus Diameter

- For annular flow, it is necessary to use a hypothetical circular diameter, d_{a}, which is the hydraulic equivalent of the actual annular system
- The hydraulic radius is defined as:
hydraulic radius, $\quad r_{h}=\frac{\text { cross-sectional area of flow system }}{\text { wetted perimeter of conduit }}$
wetted perimeter of conduit
for an annulus $\rightarrow \quad r_{h}=\frac{\pi\left(r_{1}^{2}-r_{2}^{2}\right)}{2 \pi\left(r_{1}+r_{2}\right)}=\frac{r_{1}-r_{2}}{2}$
for a circular pipe $\rightarrow r_{h}=\frac{\pi r^{2}}{2 \pi r}=\frac{r}{2}$
- The frictional loss in an annulus is equal to the loss in a circular pipe having the same hydraulic radius; hence, in general terms:

$$
\begin{equation*}
r_{e}=r_{1}-r_{2} \quad \text { or } \quad d_{e}=d_{1}-d_{2} \tag{3.11}
\end{equation*}
$$

where r_{e} and d_{e} are the hydraulically equivalent radius and diameter

Pressure Drop Across Bit Nozzles

> Consider the diagram below for incompressible fluid:

Fig. 3.2: Schematic sketch of incompressible fluid flowing through a converging tube or nozzle.
> Assuming steady state, adiabatic, and frictionless:
where:

$$
\begin{equation*}
\frac{p_{1}}{\rho}+\frac{\bar{v}_{1}^{2}}{2 g}=\frac{p_{2}}{\rho}+\frac{\bar{v}_{2}^{2}}{2 g} \tag{a}
\end{equation*}
$$

$$
\begin{aligned}
p_{1}, p_{2} & =\text { turbulent flow pressure drop, } \mathrm{lb} / \mathrm{ft}^{2} \\
\rho & =\text { density, } \mathrm{lb} / \mathrm{ft}^{3} \\
\bar{v}_{1}, \bar{v}_{2} & =\text { velocities at points } 1 \text { and } 2, \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

$$
\begin{equation*}
\frac{p_{1}}{w}+\frac{\bar{v}_{1}^{2}}{2 g}=\frac{p_{2}}{w}+\frac{\bar{v}_{2}^{2}}{2 g} \tag{a}
\end{equation*}
$$

or

$$
\frac{\Delta p}{\rho}=\frac{\bar{v}_{2}^{2}-\bar{v}_{1}^{2}}{2 g}
$$

$>$ Practically, $\bar{v}_{2}^{2}-\bar{v}_{1}^{2} \cong \bar{v}_{2}^{2}$, therefore:

$$
\begin{equation*}
\bar{v}_{2}^{2}=2 g \frac{\Delta p}{\rho} \tag{b}
\end{equation*}
$$

$>$ The ideal rate of flow, $q_{i}=A_{2} \bar{v}_{2}$. The actual flow rate q is:

$$
\begin{equation*}
q=C q_{i} \tag{c}
\end{equation*}
$$

where C is the flow or nozzle coefficient for particular design.
$>$ By substituting Eq. (c) into Eq. (b), and rearranging it, the equation becomes:

$$
\begin{equation*}
\Delta p=\frac{\rho q^{2}}{2 g C^{2} A_{2}^{2}} \tag{3.12}
\end{equation*}
$$

$>$ Altering Eq. (3.12) to practical units for mud flow, we:

$$
\begin{equation*}
\Delta p_{b}=\frac{q^{2} \rho}{7,430 C^{2} d_{e}^{4}} \tag{3.13}
\end{equation*}
$$

where $d_{e}=$ hydraulically equivalent nozzle diameter, in.
\Rightarrow The value of C is around $0.8-0.98$.

Multiple Nozzles

$>$ The calculation of Δp across a multiple nozzle bit may be simplified by substituting the sum of the nozzle areas for \boldsymbol{A} in Equation (3.12).
$>$ For single nozzle:

$$
\Delta p=\frac{\rho q^{2}}{2 g C^{2} A^{2}}
$$

$>$ For several nozzles, each of area A_{1} :

$$
\Delta p_{m}=\frac{\rho q_{1}^{2}}{2 g C^{2} A_{1}^{2}}
$$

$>$ For parallel flow, $q_{1}=\frac{q}{n}$, where $n=$ number of nozzles. therefore:

$$
\frac{\Delta p_{m}}{\Delta p}=\frac{q_{1}^{2}}{q^{2}} \frac{A^{2}}{A_{1}^{2}}=\frac{q_{1}^{2} A^{2}}{n^{2} q_{1}^{2} A_{1}^{2}}
$$

$>$ Cross sectional area of flow, A , is defined as

$$
\begin{gathered}
\quad \frac{A^{2}}{n^{2} A_{1}^{2}}=1 \\
\therefore A^{2}=n^{2} A_{1}^{2}
\end{gathered}
$$

or

$$
\begin{equation*}
A=n A_{1} \tag{3.14}
\end{equation*}
$$

$>$ Similarly, for use in Eq. (3.13)

$$
\begin{equation*}
d_{e}=\sqrt{n d^{2}} \tag{3.15a}
\end{equation*}
$$

$>$ If the multiple nozzles vary in size,
where:

$$
\begin{equation*}
d_{e}=\sqrt{a d_{1}^{2}+b d_{2}^{2}+\text { etc. }} \tag{3.15b}
\end{equation*}
$$

$a=$ number of nozzles having diameter d_{l}.
$b=$ number of nozzles having diameter d_{2}.
$d_{e}=$ hydraulically equivalent single nozzle diameter, in.

Example 3.2

A $10 \mathrm{lb} / \mathrm{gal}$ mud is being circulated at the rate of $500 \mathrm{gal} / \mathrm{min}$. through a tri-cone bit having three $3 / 8 \mathrm{in}$. diameter jets. What is the pressure drop across the bit?

Solution 3.2

$$
d_{e} \text { or } d=\sqrt{3\left(\frac{3}{8}\right)^{2}}=0.65 \mathrm{in} \text {. (equivalent single nozzle diameter) }
$$

Using Eq. (3.13):

$$
\left(p_{1}-p_{2}\right) \text { or } \Delta p=\frac{(500)^{2}(10)}{(7430)(0.95)^{2}(0.65)^{4}}=2,100 \mathrm{psi}
$$

Pressure Drop Calculations for a Typical Systems Example 3.3

Operating Data
Depth $=6,000 \mathrm{ft}(5,500 \mathrm{ft}$ drill pipe, 500 ft drill collars)
Drill pipe $=41 / 2$-in. internal flush, $16.6 \mathrm{lb} / \mathrm{ft}$ (ID $=3.826$ in.)
Drill collars $=63 / 4 \mathrm{in}$. (ID = 2.813 in .)
Mud density, $\quad \rho_{m}=10 \mathrm{lb} / \mathrm{gal}$
Plastic viscosity, $\mu_{p}=30 \mathrm{cp}$
Bingham yield, $Y_{b}=10 \mathrm{lb} / 100 \mathrm{ft}^{2}$
Bit $=77 / 8$-in., 3 cone, jet rock bit
Nozzle velocity required = at least $250 \mathrm{ft} / \mathrm{sec}$ through each nozzle (this value is obtained by a commonly applied rule of thumb). Assume C $=0.95$ Surface equipment type $=2$

What hydraulic (pump output) horsepower will be required for these conditions?

Solution 3.3

Circulation rate: This is obtained from the desired annular velocity necessary for proper hole cleaning (cutting removal).

Assume that this is a fast drilling, soft rock area and that $180 \mathrm{ft} / \mathrm{min}$ ($3 \mathrm{ft} / \mathrm{sec}$) upward velocity based on a gauge hole is required (i.e. annular velocity around the drill pipe).

The flow rate , q is:

$$
\begin{aligned}
q & =(\text { annulus area }) \times \text { velocity } \\
& =2.45\left(d_{h}^{2}-d_{p}^{2}\right) \bar{v} \\
& =2.45\left[\left(7 \frac{7}{8}\right)^{2}-\left(4 \frac{1}{2}\right)^{2}\right](3) \\
& =307 \mathrm{gpm}
\end{aligned}
$$

Gbr ni tak perlu

ubah

(a) Surface equipment losses (Δp_{s})

Eq. (3.16) $\Delta p_{s}=E \rho_{m}^{0.8} q^{1.8} \mu_{p}^{0.2}$
Surface equipment type $2 \xrightarrow{\text { Table } 3.1} E=9.6 \times 10^{-5}$
$\therefore \Delta p_{s}=\left(9.6 \times 10^{-5}\right)(10)^{0.8}(307)^{1.8}(30)^{0.2}=36 \mathrm{psi}$
(b) Pressure losses inside drill pipe (Δp_{p})

The average velocity inside the drill pipe:

$$
\bar{v}=\frac{q}{2.45 d^{2}}=\frac{307}{2.45(3.826)^{2}}=8.56 \mathrm{ft} / \mathrm{sec}
$$

The critical velocity:

$$
\begin{aligned}
v_{\mathrm{c}} & =\frac{1.08 \mu_{\mathrm{p}}+1.08 \sqrt{\mu_{\mathrm{p}}^{2}+9.3 \rho_{\mathrm{m}} d^{2} Y_{\mathrm{b}}}}{\rho_{\mathrm{m}} d} \\
& =\frac{1.08(30)+1.08 \sqrt{(30)^{2}+(9.3)(10)(3.826)^{2}(10)}}{(10)(3.826)} \\
& =4.25 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

$\bar{v}>v_{c} \Rightarrow \therefore$ turbulent flow (use Eq. 3.4)

$$
\begin{aligned}
& N_{\mathrm{Re}}=\frac{2,970 \rho \bar{v} d}{\mu_{\mathrm{p}}}=\frac{(2,970)(10)(8.58)(3.826)}{30}=32,423 \cong 32,400 \\
& \left.\begin{array}{l}
N_{\mathrm{Re}}=32,400 \\
\text { Curve II }
\end{array}\right\} \xrightarrow{\text { Fig. } 7.1} f=0.0066
\end{aligned}
$$

Applying Eq. (3.4):

$$
\Delta p_{\mathrm{p}}=\frac{f \rho L \bar{v}^{2}}{25.8 d}=\frac{(0.0066)(10)(5,500)(8.56)^{2}}{(25.8)(3.826)}=269 \mathrm{psi}
$$

(c) Pressure losses inside drill collar (Δp_{c})

The average velocity inside the drill collar:

$$
\bar{v}=\frac{q}{2.45 d^{2}}=\frac{307}{2.45(2.813)^{2}}=15.84 \mathrm{ft} / \mathrm{sec}
$$

The critical velocity:

$$
\begin{aligned}
v_{\mathrm{c}} & =\frac{1.08 \mu_{\mathrm{p}}+1.08 \sqrt{\mu_{\mathrm{p}}^{2}+9.3 \rho_{\mathrm{m}} d^{2} Y_{\mathrm{b}}}}{\rho_{\mathrm{m}} d} \\
& =\frac{1.08(30)+1.08 \sqrt{(30)^{2}+(9.3)(10)(2.813)^{2}(10)}}{(10)(2.813)} \\
& =4.64 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{v}>v_{c} \Rightarrow \therefore \text { turbulent flow (use Eq. 3.4) } \\
& N_{\mathrm{Re}}=\frac{2,970 \rho \bar{v} d}{\mu_{\mathrm{p}}}=\frac{(2,970)(10)(15.84)(2.813)}{30}=44,112 \cong 44,100 \\
& \left.\begin{array}{l}
N_{\mathrm{Re}}=44,100 \\
\text { Curve II }
\end{array}\right\} \xrightarrow{\text { Fig. } 7.1} f=0.0062
\end{aligned}
$$

Applying Eqn. (3.4):

$$
\Delta p_{c}=\frac{f \rho L \bar{v}^{2}}{25.8 d}=\frac{(0.0062)(10)(500)(15.84)^{2}}{(25.8)(2.813)}=107 \mathrm{psi}
$$

(d) Pressure losses through bit ($\left(\Delta p_{b}\right)$

Three nozzles (one for each cone) will be used, hence $1 / 3 q$ will flow through each. For $\bar{v}=$ at least $250 \mathrm{ft} / \mathrm{sec}$ through each nozzle,

$$
d=\sqrt{\frac{\frac{1}{3} q}{2.45 \bar{v}}}=\sqrt{\frac{307 / 3}{(2.45)(250)}}=0.41 \mathrm{in}
$$

Nozzle sizes are sell in multiples of $1 / 32$ in. Therefore, the nearest stock nozzle available is 13/32 in. (i.e. 0.40625 in.):
\therefore nozzle diameter of $\frac{13}{32} \mathrm{in}$. is chosen

This nozzle allows an actual velocity of:

$$
\bar{v}=\frac{102}{2.45\left(\frac{13}{32}\right)^{2}}=252 \mathrm{ft} / \mathrm{sec}
$$

$$
\begin{array}{ll}
\text { Eq. (3.15a) } & d_{e}=\sqrt{n d^{2}} \\
\text { Eq. (3.15b) } & d_{e}=\sqrt{a d_{1}^{2}+b d_{2}^{2}+\text { etc. }}
\end{array}
$$

Using Eq. (3.15) or (3.15a), the actual nozzle diameter:

$$
d=\sqrt{3\left(\frac{13}{32}\right)^{2}}=0.704 \mathrm{in} .
$$

Eq. (3.13) $\Delta p_{\mathrm{b}}=\frac{q^{2} \rho_{\mathrm{m}}}{7,430 C^{2} d^{4}}$
\therefore Pressure drop across the bit, Δp_{b} :

$$
\Delta p_{\mathrm{b}}=\frac{(307)^{2}(10)}{7,430(0.95)^{2}(0.704)^{4}}=573 \mathrm{psi}
$$

(e) Pressure losses around drill collar ($\Delta p_{a c}$)

The average velocity around the drill collar:

$$
\bar{v}=\frac{307}{(2.45)\left[\left(7 \frac{7}{8}\right)^{2}-\left(6 \frac{3}{4}\right)^{2}\right]}=7.62 \mathrm{ft} / \mathrm{sec}
$$

The hydraulically equivalent diameter of the annulus:

$$
\begin{aligned}
& d_{a}=d_{1}-d_{2} \\
& d=7 \frac{7}{8}-6 \frac{3}{4}=1 \frac{1}{8} \mathrm{in}
\end{aligned}
$$

The critical velocity:

$$
v_{\mathrm{c}}=\frac{1.08(30)+1.08 \sqrt{(30)^{2}+(9.3)(10)\left(1 \frac{1}{8}\right)^{2}(10)}}{(10)\left(1 \frac{1}{8}\right)}=7.26 \mathrm{ft} / \mathrm{sec}
$$

$\bar{v}>v_{c} \Rightarrow \therefore$ turbulent flow (use Eq. 3.4)

$$
\begin{aligned}
& N_{\mathrm{Re}}=\frac{2,970 \rho \bar{v} d}{\mu_{\mathrm{p}}}=\frac{(2,970)(7.62)\left(1 \frac{1}{8}\right)}{30}=8,487 \cong 8,500 \\
& \left.\begin{array}{l}
N_{\mathrm{Re}}=8,400 \\
\begin{array}{l}
\text { Curve IV (for annuli } \\
\text { in uncased hole) }
\end{array}
\end{array}\right\} \xrightarrow{\text { Fig. } 7.1} f=0.0098
\end{aligned}
$$

Applying Eqn. (3.4):

$$
\Delta p_{\mathrm{ac}}=\frac{f \rho L \bar{v}^{2}}{25.8 d}=\frac{(0.0098)(10)(500)(7.62)^{2}}{(25.8)\left(1 \frac{1}{8}\right)}=98 \mathrm{psi}
$$

(f) Pressure losses around drill pipe ($\Delta p_{\text {ap }}$)

The average velocity around the drill collar (as assume/given earlier):

$$
\bar{v}=3 \mathrm{ft} / \mathrm{sec}
$$

The hydraulically equivalent diameter of the annulus:

$$
\begin{aligned}
& d_{a}=d_{1}-d_{2} \\
& d=7 \frac{7}{8}-4 \frac{1}{2}=3 \frac{3}{8} \mathrm{in}
\end{aligned}
$$

The critical velocity:

$$
\begin{aligned}
& v_{\mathrm{c}}=\frac{1.08(30)+1.08 \sqrt{(30)^{2}+(9.3)(10)\left(3 \frac{3}{8}\right)^{2}(10)}}{(10)\left(3 \frac{3}{8}\right)}=4.39 \mathrm{ft} / \mathrm{sec} \\
& \bar{v}<v_{c} \Rightarrow \therefore \text { laminar flow (use Eq. 3.6) } \Delta p=\frac{L}{300 d}\left(Y_{\mathrm{b}}+\frac{\mu_{\mathrm{p}} \bar{v}}{5 d}\right) \\
& \therefore \Delta p_{a p}=\frac{5,500}{300\left(3 \frac{3}{8}\right)}\left[10+\frac{30(3)}{5\left(3 \frac{3}{8}\right)}\right]=83 \mathrm{psi}
\end{aligned}
$$

(g) The total pressure drop in the system (Δp_{t})

$$
\Delta p_{\mathrm{t}}=36+269+107+573+98+83 \cong 1,166 \mathrm{psi}
$$

(h) Horsepower output at the pump

$$
\begin{equation*}
H P=\frac{q \times \Delta p}{1,714 \times \eta_{v} \times \eta_{m}} \tag{3.17}
\end{equation*}
$$

where:

$$
\begin{aligned}
& q=\text { flow rate, gpm } \\
& \eta_{v}=\text { volumetric efficiency } \\
& \eta_{m}=\text { mechanical efficiency }
\end{aligned}
$$

Assuming volumetric and mechanical efficiencies of the pump are 90% and 85% respectively:

$$
\therefore H P=\frac{307(1,166)}{1,714(0.90)(0.85)}=273 \text { horsepower }
$$

Summary

Bingham Plastic Model: Calculation Steps

Example 3.4

$$
\Delta p=\Delta p_{u} \times \frac{\rho_{m}}{9.5} \times\left[\frac{\mu_{p}}{3.2(3)}\right]^{0.14}
$$

Using a data as in Example 3.3, calculate the circulating pressure required.

Solution 3.4

From Example 3.3: $q=307 \mathrm{gpm}$, bit $=3$ 13/32 in. nozzles
(a) Surface equipment losses ($4 p_{s}$)
$\left.\begin{array}{l}q=307 \mathrm{gpm} \\ \text { Curve type 2 }\end{array}\right\} \xrightarrow{\text { Fig. } 7.3} \Delta p_{u}=27 \mathrm{psi}$
$\therefore \Delta p_{s}=27 \times \frac{10}{9.5} \times\left[\frac{30}{3.2(3)}\right]^{0.14}=33 \mathrm{psi}$
(b) Pressure losses inside drill pipe (Δp_{p})

$$
\begin{aligned}
& \left.\begin{array}{l}
q=307 \mathrm{gpm} \\
\text { Curve } 7
\end{array}\right\} \xrightarrow[\text { (assume ID }=3^{\left.33 / 4^{\prime \prime}\right)}]{\text { Fig. } 7.5\left(\text { for } 4 .{ }^{\prime \prime} \mathrm{d}\right)} \Delta p_{u}=\frac{32}{1,000} \times 5,500=176 \mathrm{psi} \\
& \therefore \Delta p_{p}=176 \times \frac{10}{9.5} \times\left[\frac{30}{3.2(3)}\right]^{0.14}=217 \mathrm{psi}
\end{aligned}
$$

$$
\Delta p=\Delta p_{u} \times \frac{\rho_{m}}{9.5} \times\left[\frac{\mu_{p}}{3.2(3)}\right]^{0.14}
$$

(c) Pressure losses inside drill collar (Δp_{c})
$\left.\begin{array}{l}q=307 \mathrm{gpm} \\ \text { Curve } 23 / 4 \text { bore }\end{array}\right\} \xrightarrow[\text { (assume } \mathrm{ID}=2^{33 / 4)}]{\text { Fig. } 7.7} \Delta p_{u}=\frac{15}{100} \times 500=75 \mathrm{psi}$
$\therefore \Delta p_{c}=75 \times \frac{10}{9.5} \times\left[\frac{30}{3.2(3)}\right]^{0.14}=93 \mathrm{psi}$
(d) Pressure losses through bit $\left(\Delta p_{b}\right)$

$$
\Delta p=\Delta p_{u} \times \frac{\rho_{m}}{9.5}
$$

$$
\left.\begin{array}{l}
q=307 \mathrm{gpm} \\
3-\frac{13^{\prime \prime}}{32} \text { nozzle }
\end{array}\right\} \xrightarrow[\text { (no viscosity effect) }]{\text { Fig. } 7.9} \Delta p_{u}=550 \mathrm{psi}
$$

(e) Pressure losses around drill collar ($\Delta p_{a c}$)
$\Delta p=\Delta p_{u} \times \frac{\rho_{m}}{9.5} \times\left[\frac{\mu_{p}}{3.2(3)}\right]^{0.14}$ $\left.\begin{array}{l}q=307 \mathrm{gpm} \\ 63 / 4 \text { drill collar }\end{array}\right\} \xrightarrow[\left(\text { bit size }=77 / 8^{\prime \prime}\right)]{\text { Fig. } 10} \Delta p_{u}=\frac{25}{100} \times 500=125 \mathrm{psi}$
$\therefore \Delta p_{a c}=125 \times \frac{10}{9.5} \times\left[\frac{30}{3.2(3)}\right]^{0.14}=154 \mathrm{psi}$
(f) Pressure losses around drill pipe ($\Delta p_{a p}$)
$\left.\begin{array}{l}q=307 \mathrm{gpm} \\ 41 / 2 \text { drill pipe }\end{array}\right\} \xrightarrow[\left(\text { bit size }=77 / 8^{\prime \prime}\right)]{\text { Fig. } 7.10} \Delta p_{u}=\frac{1.4}{100} \times 5,500=77 \mathrm{psi}$
$\therefore \Delta p_{a p}=77 \times \frac{10}{9.5} \times\left[\frac{30}{3.2(3)}\right]^{0.14}=95 \mathrm{psi}$
(g) The total pressure drop in the system (Δp_{t})

$$
\Delta p_{\mathrm{t}}=33+217+107+579+154+95 \cong 1,185 \mathrm{psi}
$$

Comparison of Δp Calculation Methods

System component	Plastic flow calculation (psi)	Hughes Tools Co. charts (psi)
Surface connections, Δp_{s}	$\mathbf{3 6}$	$\mathbf{3 3}$
Inside drill pipe, Δp_{p}	$\mathbf{2 6 9}$	$\mathbf{2 1 7}$
Inside drill collar, Δp_{c}	$\mathbf{1 0 7}$	$\mathbf{1 0 7}$
Bit nozzles, $\Delta p_{\boldsymbol{b}}$	$\mathbf{5 7 3}$	$\mathbf{5 7 9}$
Outside drill collar, $\Delta p_{a c}$	$\mathbf{9 8}$	$\mathbf{1 5 4}$
Outside drill pipe, $\Delta p_{a p}$	$\mathbf{8 3}$	$\mathbf{9 5}$
Total circulating	1,166	$\mathbf{1 , 1 8 5}$
pressure, Δp_{t}		

Additional Information

$>$ Besides Newtonian and Bingham Plastic Models, there are several other model used to predict pressure losses in mud circulating systems.
$>$ Generally, each model is based on a set of assumptions which cannot be completely fulfilled in any drilling situation.
> Power law, Herschel-Bulkley (Yield Power Law @ API Power Law) models are the most widely used in the oil industry.
$>$ Table 3.3 shows a summary of pressure loss equations

