
Structured Data

Associate Prof. Dr. Norazah Yusof

Programming Technique II
– SCJ1023

2

• Abstract Data Types (ADTs) are data types
created by programmer.

• ADTs compose of two groups of elements:
– a range of data and

– a set of operations to be performed on the
data.

• Abstraction is a definition that captures
general characteristics of objects without
details.

What is Abstract Data Types?

3

• Data type defines the values that can be
stored in a variable, for instance, int, char,
double and unsigned long int.

• Structure is a collection of multiple
variables into a single name, providing a
convenient means of keeping related
information together.

What is data type and structure?

4

• Structure definition does not allocate
memory.

• To allocate memory, need to declare a
variables of the structure data type.

• Example:

Define a structure

1

2

3

4

5

6

7

8

struct Chalet {

char type[3];

int number;

int roomCount;

double rate;

double discount;

};

Chalet meranti, rumbia, kemayan[3];

5

Memory Layout of variables of
type Chalet

meranti

type

number

roomCount

rate

discount

rumbia

type

number

roomCount

rate

discount

Kemayan[0]

type

number

roomCount

rate

discount

Kemayan[1]

type

number

roomCount

rate

discount

Kemayan[2]

type

number

roomCount

rate

discount

6

• Structure members are all variables
declarations in a structure.

• Individual members of a structure are
accessed through the use of the dot (.)
operator.

• Example:
kemayan[2].rate

meranti.number

rumbia.type[2]

Accessed a structure member

7

Arrays of Structures

• Structures can store several items of varying
data types.

• Array of structures can be used to store a list
of variable of heterogeneous data types.

• Array of structure definition - same as any
other array definition.

• Format:

 Chalet kemayan[3];

8

Nested Structures

• A structure variable may become a member of
another structure variable.

• Example:
struct Cost
 {
 double wholesale;

 double retail;
 };
 struct Item
 {

 char partNum[10];

 char description[25];
 Cost pricing;

 };

 Item widget;

9

Pointers to Structures
• A structure variable has an address. Pointers

to structures can hold the address of a
structure.

• An asterisk is used to declare the pointer
variable.

• Operator & is used to assign the address

• Example:
 Cost myCost = {150.00, 200.00};

 Cost * costPtr;

 costPtr = &myCost;

10

Accessing Structure Members via
Pointer Variables

• Must use () to dereference pointer variable:

cout << (*costPtr).wholesale;

• Not field within structure:

 *costPtr.wholesale;

• Can use structure pointer operator to
eliminate () and use clearer notation:

cout << costPtr->wholesale;

11

Deferencing Structure Pointers

• Use the structure pointer operator:

 ->

A hyphen followed by the greater-than symbol (>).

• Example:
costPtr->retail = 350.00;

12

Dynamically Allocating a Structure

• Can use a structure pointer and the new
operator to dynamically allocate a structure.

• Example to define a Cost pointer named
costPtr and dynamically allocates a Cost
structure:
Cost * costPtr;

costPtr = new Cost;

costPtr->wholesale = 150.00;

costPtr->retail = 250.00;

13

Dynamically Allocating an Array of
Structure

• Can also dynamically allocate an array of
structures.

• Example to define dynamically an array of five
Cost structures, and read the retails of each
cost using for loop.

Cost * costs;

costs = new Cost[5];

for (int i=0; i< 5; i++)

{

 cout << "Enter the retails for circle " << (i+1) << ": ";

 cin >> circle[i].retails;

}

