

MKR1163 PLASTICS DESIGN AND PROCESSING

Materials Selection Criteria

innovative • entrepreneurial • global

ocw.utm.my

Case Study

A tale of two materials of different MW

Better flow can mean trade-offs in long-term material performance.

- Molders prefer higher-flow materials.
- They enable processors to fill the same part with less pressure or at a lower melt temperature, which can translate to shorter cycle times and lower clamp tonnage.
- They can also extend the complexity of the geometries that can be produced.
- However, more often than not, molders fail to address sacrifices in long term properties.

What makes materials flow faster?

- 1. Additives technology and
- 2. Modification of the polymer itself.
 - Both may be used, and it is not always simple to determine the approach a material supplier has taken.
 - In most cases the differences in flow are achieved by reducing the average molecular weight of the materials.

Property changes are not always obvious

- Most commonly used method to measure MW is the melt-flow-rate test, or melt-volume rate, or melt index.
- Short-term tests that are typically used to characterize a material often miss the alterations that occur when the flow of a material is modified.

The top four properties show little or no difference between materials with different melt-flow rates.

Property	Units	2.5 MFR	9.0 MFR	27.0 MFR
Tensile strength	psi	8800	8800	8800
Rexural modulus	psi	375,000	375,000	375,000
DTUL @ 264 psi	ot	230	230	230
Notched Izod impact	ft-lb/m	1.5	1.3	1.0
Elongation @ break	96	75	60	40
Tensile impact	ft-lb/sg in	90	70	60
Fatigue endurance, 10 ⁷ cycles	pai	4000	\$300	3000

Case Study - Large Chute Deflector

- Parts of this type are traditionally made in some variation of a high-molecular-weight impact copolymer, referred to as a 2-melt (2 g/10 min) 12-Izod copolymer.
- This part was launched in just such a compound and was successful.

Chute Deflector - materials change

- At some point, to increase productivity, the molder was persuaded to change to a material with a nominal melt-flow rate of 15 g/10 min.
- The two data sheets showed virtually no difference in strength or modulus and a decline in Izod from only 12 to 11 ft-lb/in.

	2. Izod a esults	and falling	g dart im	pact
Material	Notched Izod (ft-lb/in)	Falling dart energy @ max load (ft-lb)	Total energy (ft-lb)	% falling dan energy after max load
2-melt	12.24	12.06	25.19	52.0
15-melt	10.67	11.37	21.68	47.6

The Chute fails, why?

- However, within four months chutes began to come back from the field with cracks.
- At first, improper processing was suspected. However, notched Izod and instrumented falling dart impact tests both showed that the 15-melt material was quite ductile. The different in values were not different enough to cause any concern.
- In addition, all breaks were ductile.

Hints from Tensile Tests

- The elongation at break is a relative measure of ductility, and in this test, the 2-melt material exhibits almost three times the elongation.
- But perhaps even more important is the difference in elongation at yield.
- One of the shortcomings of traditional impact tests is that they measure the response from a single catastrophic event. But impact failures seldom occur in this manner in the real world.

As the Chains Unravel

- Fundamentally, thermoplastics consist of an entangled network of long chains.
- Failure occurs when sufficient energy is applied to the system to disrupt this entanglement. Longer individual chains found in higher-molecular-weight materials are more thoroughly entangled, so more energy is required to create this disruption.

Elonga	•	results	ile test	e 3. Tensi	Table
results show v	Tensile modulus (psi)		-	Tensile strength @ yield (psi)	Material
the chi failed i	117,420	174	11.62	2549	2-melt
field.	121,940	62	6.89	2580	15-melt

Plastic Materials Selection Criteria

- 1. Physical & Mechanical Considerations
- 2. Thermal Considerations
- 3. Chemical Considerations
- 4. Bearing and Wear Considerations
- 5. Others

Plastic Materials Selection Criteria -Physical & Mechanical Considerations

- * What are the overall part dimensions (diameter, length, width, thickness)?
- * What load will the part have to carry?
- * Will the design carry high loads?
- * What will the highest load be?
- * What is the maximum stress on the part?
- * What kind of stress is it (tensile, flexural, etc.)?
- * How long will the load be applied?
- * Will the load be continuous or intermittent?
- * Does the part have to retain its dimensional shape?
- * What is the projected life of the part or design?

Plastic Materials Selection Criteria -Thermal Considerations

* What temperatures will the part see and for how long?

* What is the maximum temperature the material must sustain?

* What is the minimum temperature the material will sustain?

* How long will the material be at these temperatures?

* Will the material have to withstand impact at the low temperature?

* What kind of dimensional stability is required (is thermal expansion and contraction an issue)?

Plastic Materials Selection Criteria -Chemical Considerations

- * Will the material be exposed to chemicals or moisture?
- * Will the material be exposed to normal relative humidity?
- * Will the material be submerged in water? If so, at what temperature?
- * Will the material be exposed to steam?
- * Will the material be painted? If so, what kind of paint?
- * Will the material be glued? If so, what kind of adhesive will be used?
- * Will the material be submerged or wiped with solvents or other chemicals? If so, which ones?
- * Will the material be exposed to chemical or solvent vapors? If so, which If so, which ones?
- * Will the material be exposed to other materials that can outgas or leach detrimental materials, such as plasticizers or petroleum-based chemicals?

Plastic Materials Selection Criteria -Bearing and Wear Considerations

- * Will the material be used as a bearing? Will it need to resist wear?
- * Will the material be expected to perform as a bearing? If so, what will the load, shaft diameter, shaft material, shaft finish, and rpm be?
- * What wear or abrasion condition will the material see? Note: Materials filled with friction reducers (such as PTFE, molybdenum disulfide, or graphite) generally exhibit less wear in rubbing applications.

http://www.boedeker.com/regcomp.htm

Plastic Materials Selection Criteria -Other Considerations

- Will the part have to meet any regulatory requirements?
 o FDA | USDA | Canada AG | 3A-Dairy | NSF | USP Class VI
 - * Is UL94 Flame retardant rating required? What level? o 5VA | 5VB | V-0 | V-1 | V-2 | HB
 - * Should the material have a special color and/or appearance?
 - o Natural | White | Black | Other Colors
 - o Color match to another part or material?
 - o Window-Clear | Transparent | Translucent | Opaque
 - o Smooth | Polished | Textured | One-Side or Both
 - * Will the part be used outdoors?
 - * Is UV Resistance needed?
 - * Is static dissipation or conductivity important? o Insulator | Static Dissipative | Conductive

Metals Replacement a key market strategy

- In order to compete in today's very competitive environment, manufacturers put a lot of emphasis on product differentiation while maintaining good margins and low cost.
- This differentiation is done by design, visual appearance or by development of new functionalities requiring miniaturized or more sophisticated systems.