

OPENCOURSEWARE

Clinical Engineering

Clinical Engineering Equipment (Medical Ventilator)

Syed Mohd Nooh Bin Syed Omar

Innovative.Entrepreneurial.Global

ocw.utm.my

Human Respiration

- Respiration can be divided into 4 major functions:
 - pulmonary ventilation (inflow and outflow of air between the atmosphere and the lung alveoli)
 - diffusion of oxygen and carbon dioxide between the alveoli and the blood
 - transport of oxygen and carbon dioxide in the blood and body fluids to and from the body's tissue cells
 - regulation of ventilation and other facets of respiration.

Respiratory Volumes and Capacities

- Ventilator used to artificially ventilate the lungs of patients with mixture of O₂ + air who are unable to breathe naturally
- Breathing circuit (humidified + heated)
- Model:
 - negative pressure ventilators
 - positive pressure ventilators

Negative pressure ventilators

- generating a negative pressure around the patient's thoracic cage
- pressure gradient
 between the
 atmosphere and the
 lungs

Positive pressure ventilators

- applying a positive pressure (> atmospheric pressure) to the patient airways (patient circuit)
- Types neonates & adults

• Block diagram

Gas supply

- 100% O₂
- Medical air (21% O_{2 +} 79% N₂)
- Bottled gases (15 Mpa) + Regulator (to 350-400 kPa)
- Wall (350-400 kPa)
- Colour coded + Pin indexed

Filters + Water traps

Pressure Regulators

- To filter water, dust, bacteria
- To protect equipment and also the patient
- 350-400 kPa to 110-170 kPa (depand on brand)

Solenoids valve (P Sols)

Solenoids control flow & mix of gases

- Changing current = changing flow
- electromechanical valve for use with liquid or gas controlled by running or stopping an electric current through a solenoid

Blender

- To control:
 - Tidal volume
 - Patient flow rates
 - Respiratory rates
- Gases mixed in tubing @ separate chamber

Oxygen sensor

- Only measured O₂
- In-line with inspired gas

Humidification (Heated humidifier)

• To warm & humidified air

CPU

- Controls regulation of all parameters
- Checks alarm conditions
- Keeps a record of all errors
- Attached to the user interface (control)
- Calibrated flow sensor & O₂ sensor
- Checks for leaks in the system

Breathing circuit

- Inspiratory tubing
- Humidifier
- Heated wire
- Y-piece
- Expiratory tubing
- Water trap

Endotracheal tubing

- Connects patient to ventilator
- Ballon at the end that inflated

Medical Terminology

- FiO₂ (Fractional Inspired Oxygen) fraction (%) of the gas inspired
- T^I (Inspiratory time)
- T^E (Expiratory time)
- I/E ratio (T^I/T^E ratio)
- MAP (Mean Airway Pressure)
- PEEP (Positive End Expiratory Pressure) pressure remaining in the patient circuit & lung at the end of expiration
- PIP (Peak Inspiratory Pressure) maximum pressure generated by the ventilator during inspiration

Modes

- Spontaneous Ventilation
 - Continuous Positive Airway Pressure (CPAP) = small +ve constant pressure
 - Pressure Support
 - Synchronized Intermittent Mandatory Ventiliation (SIMV) = patient attempt to breath + ventilator delivers a breath in time
- Mandatory Ventilation
 - Controlled mandatory ventilation (CMV) = timing of breaths & pressure set by user
 - volume controlled ventilation
 - pressure controlled ventilation
 - Positive end expiratory pressure (PEEP)
- tidal volume / respiration rate / inspiratory flow pattern / oxygen concentration of the breath