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Neural network definition

* NN is a computing sys. consists of a number of
simple, highly interconnected nodes
(processing elements) that process
information

e A concept that try to mimic how human brain
functions
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Biological Analogy

/:>\\\,Zi Dendrites
+
+

Synapses

Nodes

Synapses

(weights)




ocw.utm.my

Example

input —
touching hot
surface

Output —
withdrawin

g your
hand

\ O 4

The processing in your brain that
led from one to the other
remains hidden



ocw.utm.my

Potential Applications

e Classification-given symptoms, determine the
most likely disease, speech analysis, fault
diagnosis

e Prediction-given wind velocity and humidity,
predict evaporation rate

e Pattern association-retrieve an image from
corrupted one
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Potential Applications

* Data conceptualization-cluster data with many
attributes

e Data filtering-smooth input signal

e Optimization-optimize the settings of process
controllers, thus feeding the correct amount of
additives
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classification example
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Why neural networks?

e Compare to empirical model (curve
fitting), NN model performs better for
noisy or incomplete data. Better
generalization
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Why neural networks?

e Compare to theoretical/mechanistic model, NN
model is easier to develop especially for
complex, nonlinear and uncertain syst.

e Potential for online use because a trained

network may take less than a second to calculate
results
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Limitations of Neural Networks

e Large amount of data — broad-based data set
or experimental design is essential

e Long training times — however as computers
become more powerful, time requirements

are less
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Network architectures

e Three different classes of network architectures

single-layer feed-forward neurons are organized
multi-layer feed-forward in}acyclic layers
recurrent

e The architecture of a neural network is linked with the
learning algorithm used to train
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Single Layer Feed-forward

(one processing layer — the output layer)
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Multi layer feed-forward

(several processing layers — hidden and output layers

3-4-2 Network
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Recurrent network

Recurrent Network with hidden neuron: unit delay operator z1is used to model a
dynamic system
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The Unit of a Neural Network

e The unit of a neural network is modeled on
the biological neuron

 The unit combines its inputs into a single
value, which it then transforms to produce
the output; together these are called the
activation function
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Neuron/node: perceptron
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Neuron

The neuron is the basic information processing unit of a NN. It
consists of:

A set of links, describing the neuron inputs, with weights W,
w,, ..., W

An adder function (linear combiner) for computing the
weighted sum of the inputs (real numbers):
m

V=23 WijXj
]=1

Activation function (squashing function) Q for limiting the
amplitude of the neuron output.

y=p(v+b)
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Blas as extra input

* The bias is an external parameter of the neuron. It can be
modeled by adding an extra input.
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Neuron Models

e The choice of @etermines the neuron model. Examples:

 step function: (V) = a _if V<C
bifv>c
e ramp function: (a4 ifv<c

p(V)=<b ifv>d
la+((v—-c)(b-a)/(d —c)) otherwise

1
1+exp(—xv+Yy)

e sigmoid function:
with z,x,y parameters p(V)=2+

2
* Gaussian function: (V) = 21 exp(_l(v_ﬂ] J
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Logistic function
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Neural Network Model
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e How to calculate the output y

e How to update or adjust weights w? Depend
on type of training algorithm use

S = Y=g{V+b)
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Learning/training Types

e Supervised learning — require input & desired
output data

 Unsupervised learning — normally for pattern
analysis — discover patterns or features, learning
from observation, blur or corrupted images

 Reinforcement learning — the output can be
correct or incorrect, do not know what the
correct answer is. Example: chess game — reward
right moves and punish wrong ones
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Learning Rules/Algorithms

Gradient or steepest Descent - Backprop
Widrow-Hoff (Least Mean Square)
Generalized Delta

Error-Correction

Scaled Conjugate gradient
Levenberg-Marquardt

Kohonen

Hebbian

Etc.
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Developing Neural Networks

e Requires 3 phases:

Training or learning phase — update/adjust the
weights using learning/training algorithm, time
consuming and the critical phase

Recall phase — access outputs deviation from target
response using the calculated weight factors,
biases and training data

Generalization phase — subject the network to new
input patterns and known output data, where the
system hopefully performs properly
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NN Training —supervised learning

* Training -process of setting/determining the best
weights on the edges connecting all the units in
the network

* The goal is to use the training set to calculate
weights where the output of the network is as
close to the desired output as possible for as
many of the examples in the training set as
possible
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Neural Network Training

* Back propagation has been used since the 1980s
to adjust the weights (other methods are now
available):

Calculates the error by taking the difference
between the calculated result and the
actual result

The error is fed back through the network
and the weights are adjusted to minimize
the error
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Practical aspect of neural computing

e Selecting number of hidden layers
* Normalizing input and output data sets
e |nitializing the weights

e Setting learning rate and momentum coefficient —
depend on training algorithm use

e Selecting proper transfer function
 Generating and using a network learning curve
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Neural networks performance

e Accuracy — MSE, SSE, El, overfitting
e Complexity of a model

 Convergence
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Minimizing the Error
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Gradient descent
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Over fitting

Real Distribution Overfitted Model
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Over fitting in Neural Nets
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Performance factors

Data Preparation

Weight Initialization

Learning rate and momentum
Optimization method
Architecture selection
Activation functions

Active Learning
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