

Prestressed Concrete Design (SAB 4323)

Design for Ultimate Strength in Flexure

Dr. Roslli Noor Mohamed

Innovative.Entrepreneurial.Global

ocw.utm.my

Introduction

- The most important single property of a structure is its strength
- Why? Because a member's strength relates directly to its safety!
- Adequate strength of a prestressed concrete member is not automatically insured by limiting stresses at service load

<u>Introduction</u>

- Should the member be overloaded, significant changes in behaviour result from cracking, and because one or both of the materials will be stressed into the inelastic range before failure
- The true factor of safety can be established only by calculating the strength of the member and comparing the load that would cause the member to fail with the load that is actually expected to act.

Ultimate Load Behaviour

- The overall behaviour of a simply supported prestressed beam subjected to a monotonically increasing load can be well described by its load-deflection curve as shown on the next slide
- Typical stress diagrams along the cross section of maximum moments corresponding to points 1 to 7 are also shown
- Point 1 Upward deflection(camber) due to β Pi and Wsw
- If additional load beyond self weight is applied, several points of interest can be identified until failure
- Point 2 Zero deflection and corresponds to a uniform state of stress in the section
- Point 3 Decompression or zero stress at the bottom fibre
- Point 4 Beginning of cracking in the concrete $(f_{2s} = f_{tu})$

Ultimate Load Behaviour

Ultimate Load Behaviour

- Beyond point 4, the prestressed concrete section behaves similar to reinforced concrete section subjected to combined bending and compression
- Point 5 Either concrete or steel reaches its non elastic characteristics
- Point 6 Steel has reach its yielding strength
- Point 7 Maximum capacity of beam attained at ultimate load

Flexural Types of Failure

- Failure of prestressed concrete beam may occur either by rupture of steel or by crushing of concrete, depending on the amount of steel in the section
- Rupture of steel occurs when the beam contains reinforcement insufficient to carry the tensile stresses from the concrete at the instant of cracking. This type of failure is undesirable and is always avoided in design by providing a minimum amount of reinforcement (Clause 4.12.2 when Mu > Mcr, taking f_{tu} =0.6fcu^{0.5})
- When the beam contains reinforcement greater than the minimum amount, failure will always occur by crushing of the concrete

Over-Reinforced Beam

- At failure, the embedded steel may or may not yield depending on the relative amount of steel. If the amount of steel is such that <u>yielding of steel</u> (not rupture) and <u>crushing of concrete occur simultaneously</u>, the corresponding reinforcement ratio is said to be <u>balanced</u> reinforcement ratio, ρ_{b} .
- If ρ > ρ_b, the beam is said to be <u>over-reinforced</u>, i.e. steel will not yield at failure. The beam will <u>fail suddenly by crushing of</u> <u>the concrete</u> at small deflection before the cracks are fully developed.
- This type of failure is clearly undesirable in a practical situation, even if the beam has adequate margin of safety with respect to ultimate strength

Under-Reinforced Beam

- Should a structure fail, it must exhibit visible signs of distress by displaying wide cracking and excessive deflection to serve as a warning to impending collapse so that occupants may take timely measures to save the structure, if possible and, protect lives and properties
- Hence, ductility or the ability of the structure to deform at or near the ultimate load is a vital consideration
- This is usually achieved by limiting the reinforcement ratio well below the balanced ratio ($\rho < \rho_b$) that results in an <u>under-reinforced beam</u>

Ultimate Strength Analysis

<u>Assumptions</u>

 Plane sections before bending remain plane after bending i.e. strain is proportional to the distance from neutral axis (Bernoulli's Compatibility Condition)

$$\mathcal{E}i = \mathcal{E}cu \frac{(yi - x)}{x}$$

- Perfect bond exists between concrete and prestressing steel or any additional reinforcements
- Tensile strength of concrete ignored

Conditions at Collapse

The strain, stress and force distributions across a prestressed concrete section is as follows: Rectangular Equivalent

Components of Strains in Tendon

The ultimate strain in tendon, ϵ_{pb} is the sum of the followings:

- 1. Effective prestrain in tendon, ϵ_{pe}
- 2. Effective prestrain in concrete, ϵ_{ce}
- 3. Strain in tendon due to flexure, ε_p

$$\varepsilon_{pe} = \frac{\beta Pi}{A_{ps}E_{ps}}$$

$$\varepsilon_{ce} = \frac{\beta Pi}{E_c} \left[\frac{1}{A_c} + \frac{e^2}{I_{xx}} \right]$$

$$\varepsilon_p = 0.0035 \frac{(d-x)}{x}$$

$$\varepsilon_{ph} = \varepsilon_{pe} + \varepsilon_{ce} + \varepsilon_{p}$$

Ultimate Flexural Strength (Method of Strain Compatibility)

Rectangular

Section

Equilibrium Equations

Using the Equivalent Rectangular Stress Block:

- 1. $T = f_{pb}A_{ps}$; C = 0.45fcub(0.9x)
- 2. $T = C \rightarrow f_{pb} A_{ps} = 0.45 f_{cu} b(0.9x)$
- 3. $Mu = f_{pb}A_{ps}(d 0.45x)$ or $Mu = 0.405f_{cu}bx(d 0.45x)$

lee

Section

Equilibrium Equations

The following equations are valid for 0.9x >= hf:

- 1. $T = f_{pb}A_{ps}$; $C_1 = 0.405f_{cu}b_wx$; $C_2 = 0.45f_{cu}(b-b_w)hf$
- 2. $T = C \rightarrow f_{pb} A_{ps} = 0.405 f_{cu} b_w x + 0.45 f_{cu} (b-b_w) hf$
- 3. $Mu = 0.405f_{cu}b_w x(d 0.45x) + 0.45f_{cu}(b-b_w)hf (d-0.5hf)$

lee

Section

Equilibrium Equations

For 0.9x < hf:

- 1. T = $f_{pb}A_{ps}$; C₁ + C₂ = C = 0.405 $f_{cu}bx$
- 2. $T = C \rightarrow f_{pb} A_{ps} = 0.405 f_{cu} bx$
- 3. Mu = 0.405 f_{cu} bx(d 0.45x) or Mu = $f_{pb}A_{ps}(d 0.45x)$

Note: This case is similar to the Rectangular Section

Compatibility Equations

Note:

- 1. $\epsilon_{pe} \& \epsilon_{ce}$ depend on the level of effective prestress and is independent of the neutral axis position

Stress-Strain Relationship

The tri-linear relationship for prestressing tendon may be expressed mathematically as ·

Trial and Error Technique

- 1. Assume a trial value for the neutral axis depth, x
- 2. Calculate ε_{pb} from compatibility equation $\varepsilon_{pb} = \varepsilon_{pe} + \varepsilon_{ce}^{10} + \varepsilon_{p}$
- 3. Obtain f_{pb} from the stress-strain relationship
- 4. Repeat the above steps until T = C
- 5. Calculate M_u from the moment equilibrium equation,

 $M_u = f_{pb}A_{ps}(d - 0.45x)$ or $M_u = 0.405f_{cu}bx(d - 0.45x)$

Determine the design ultimate moment of resistance of the following beam:

dons_	Concrete	
1860 N/mm ²	fcu =	40 N/mm ²
1.15	γm =	1.5
195 kN/mm²	Ec=	28.0 kN/mm ²
845 mm ² 880 kN	- 1-	400
perties		500
213000 mm ²		
13170000000 mm ⁴	1	130
325 mm		2
700 mm		
400 mm	5	3
200 mm	ř	0
150 mm	<u>+</u>	
	tions 1860 N/mm ² 1.15 195 kN/mm ² 845 mm ² 845 mm ² 880 kN perties 213000 mm ⁴ 325 mm 700 mm 400 mm 200 mm 150 mm	cons Concrete 1860 N/mm² fcu = 1.15 ym = 195 kN/mm² E c = 845 mm² 880 kN perties 213000 mm² 1317000000 mm² Image: second

1. Since it is a Tee Section, try x = hf/0.9 = 200/0.9=222.222mm

- 2. Calculate ε_{pb} from compatibility equation $\varepsilon_{pb} = \varepsilon_{pe} + \varepsilon_{ce} + \varepsilon_{p}$
- $$\begin{split} \epsilon_{pe} &= P_e/(A_{ps} E_{ps}) = 880 / (845*195) = 0.00534 \\ \epsilon_{ce} &= (P_e/E_c)(1/A_c + e^2/I_x) = (880/28)(1/2.13x10^5 + 325^2/1.317x10^{10}) \\ &= 0.00040 \end{split}$$
- $\epsilon_p = 0.0035*(d-x)/x = 0.0035*(700-222.222)/222.222 = 0.00753$ $\epsilon_{pb} = 0.00534+0.00040+0.00753 = 0.01327$
- 3. Calculate f_{pb} from stress-strain relationship curve:
- $0.8f_{pu}/\gamma_m E_{ps} = 0.8*1860/1.15*195 \times 10^3 = 0.00664$
- $0.005 + f_{\rm pu}/\gamma_{\rm m}E_{\rm ps} = 0.005 + 1860/1.15*195 x10^3 = 0.01329$

Solution

3. Calculate f_{pb} from stress-strain relationship curve: $0.8f_{pu}/\gamma_m E_{ps} = 0.8*1860/1.15*195x10^3 = 0.00664$ $0.005 + f_{pu}/\gamma_m E_{ps} = 0.005 + 1860/1.15*195x10^3 = 0.01329$ From the curve, f_{ob} is between $\frac{f_{pu}}{\gamma_m}$ $\underline{\textbf{0.8 f}_{pu}} \ \epsilon_{pb} = 0.01327$ γ_m Slope 3 $0.8f_{pu}/\gamma_m$ and f_{pu}/γ_m , (steel not yield) f_{pb} Slope 2 0.2 f_{pu} = 1615.978 N/mm² Stress (tensile) 4. $T = A_{ps}f_{pb} = 1615.978 * 845/1000$ Slope = 1365.5 kN0.8 f_{pu} Eps γ_m = 0.00664Eps $C = 0.405 f_{cu} bx = 0.405 * 40 * 400 * 222.222$ $\frac{r_{\rm pu}}{{\rm Eps}\,\gamma_{\rm m}} + 0.005 = 0.01329$ 1440 kN 1000 = % Difference = 1365.5-1440/1440 = -5.4% 0.005 Strain Decrease x! Try x = 215mm, REPEAT ABOVE STEPS!!!

Solution to Example 19

Epe =	U	0	0	5	3	4	1	

Ece = 0.000400

						For 0.9	9x>hf			
x	~	21	Remark	i pb	Т	C1	C2	С	0.9x	% Diff
mm	εр	ερο		N/mm2	kN	kN	kN	kN	mm	(T-C)/T
222.2222222	0.007525	0.013265	Slope 2	1615.978	1365.502	0.00	0.00	1440.00	200.000	-5.45574
215	0.007895	0.013636	Slope 3	1617.391	1366.696	0.00	0.00	1393.20	193.500	-1.9393
210	0.008167	0.013907	Slope 3	1617.391	1366.696	0.00	0.00	1360.80	189.000	0.43138
211	0.008111	0.013852	Slope 3	1617.391	1366.696	0.00	0.00	1367.28	189.900	-0.04276
210.9	0.008117	0.013857	Slope 3	1617.391	1366.696	0.00	0.00	1366.63	189.810	0.004657
210.9098	0.008116	0.013857	Slope 3	1617.391	1366.696	0.00	0.00	1366.70	189.819	1.08E-05

			x	
Mu=	827.27	kNm	211	mm
M u =	826.94	kN m	210.9	mm
M u =	826.97	kNm	210.9098	mm

Example 7-2

Determine the ultimate moment capacity of the composite beam in example 17 and compare with the design moment.

Given:

```
Span = 20.6m; Unshored Construction
```

Loading/beam:

```
Wslab=8.11kN/m; SDL=3.73kN/m; LL=14.56kN/m
```

Beam:

```
fcu = 50N/mm<sup>2</sup>; E = 36 kN/mm<sup>2</sup>
```

Slab :

```
fcu = 40N/mm<sup>2</sup>; E = 34 kN/mm<sup>2</sup>; h = 200 mm
Prestress Steel (12.9mm dia 7-wire super strand):
```

```
Fpu = 186 kN; Aps = 100 mm<sup>2</sup>
fpu = 1860 N/mm<sup>2</sup>; %UTS = 70%
```

β**=**0.72

Compressive Force in Concrete For $0.9x \le 200$ 8 C1 = 0.45*40 *1104*0.9x/1000 kN <u>8</u> y1 = 0.45x + 0.1x = 0.55xC2=C3=0;y2=y3=0 575.80 For 200<0.9x<=230 C1 = 0.45*40*1104*200/1000 = 3974.4 kN 550 y1 = x - 0.45 * 200 = x - 901350 C2 = 0.45*50*620*(0.9x - 200)/1000 kN; C3=0 $y^2 = 0.5(0.9x-200)+0.1x$; $y^3=0$ 774.20 For 230<0.9x<=360 C1 = 3974.4 kN; y1 = x - 90C2 = 0.45*50*620*30/1000 = 418.5 kN; C3 = 0.45*50*800*(0.9x-200-30)/1000 kN $y_{2=x-200-30/2=x-215}$; $y_{3=0.1x+0.5}$ (0.9x-200-30)

Strain in tendon due to flexure, ε_{p} and prestrain, ε_{pe}

Tensile Force in Tendon

With x = 253.5 mm

- $\varepsilon_{pb1} = 0.060338$ $\varepsilon_{pb2} = 0.059648$ > 0.013295
- $\varepsilon_{pb2} = 0.058958$
- : All the tendons have yield!
- f_{pb} = 1617.39 N/mm²

Tensile force, T per cable

- = 1617.39*100*9/1000
- = 1455.65 kN
- Taking moment about Neutral Axis:

 $Mu = \Sigma C_i y_i + \Sigma T_i z_i$

Solution to Example 21

Prestressing tend	lons			Prestresse	d Concret	e		Cast In Situ Concre	te
fpu =	1860	N/mm ²		fcu =	50) N/mm ²		fcu =	40 N/mm ²
ým =	1.15			ym =	1.6	5		γm =	1.5
Eps =	195	kN/mm ²		Ec =	36.0) kN/mm ²		Ec =	34.0 kN/mm ²
Aps =	100	mm ²							
.β=	0.72			Prestressi	ng Steel L	ocation		Section Properties	
%UT S =	70	%		Dist from		No of	0 * N	bf =	1104 mm
	fpu/ym =	1617	N/mm ²	Soffit	•i	Strand		hf =	200 mm
0.8	3fpu/ym =	1294	N/mm ²	105	669.2	9	6022.8	bf1 =	620 mm
0.2	2fpu/ym =	323	N/mm ²	240	534.2	9	4807.8	hf1 =	30 mm
0.8fpu	/mEps=	0.006635	Slope 1	375	399.2	9	3592.8	bf2 =	800 mm
0.2fpu	/mEps =	0.001659	Slope 2	0	456	0	0	hf2 =	130 mm
0.005+(fpu/	ymEps) =	0.013294	Slope 3	0	456	0	0	bf3 =	250 mm
0.005+(0.2fpu/	ymEps) =	0.006659		0	456	0	0	hf3=	35 mm
						27	14423.4	bw =	300 mm
				e =	534.2	mm		- hw =	1155 mm
								h =	1550 mm

Solution to e.g.21

Determine approximate value of x

Assume all strands below cgc have yield: 1860

T = 4369.14 kN (=0.87*1869*100*27/1000)

 $C = (0.45*40*1104*200/1000) + (0.45*50*620*30/1000) - (0.45*50*800*230/1000) + (0.45*50*800*0.9/1000) \times (0.45*50*600*0.9/1000) \times (0.45*50*0) \times (0.45*0) \times (0.45*$

x = 254.0889 mm

x	bx	by	v.1	v1	C1 (kNI)	v1 C1 (kN)	v2	C2 (4ND	v2	v2 C2 (M)	C2 (M) C (M)	C2 (M) C (M)	V2 C2 (IAI) C (IAI)	C (KND	Mome	ent about Neutra	l Axis
		y i	CT (KIN)	y Z	C2 (KIN)	y.5	05(114)	C (KIN)	MC1	MC2	MC3						
254	-	154.00	3974.40	39.70	398.97	0.00	0.00	4373.370									
253.8	-	153.80	3974.40	39.59	396.46	0.00	0.00	4370.859									
253.5	-	153.50	3974.40	39.43	392.69	0.00	0.00	4367.093	610.07	15.48	0.00						

x = 253.5 mm

Total MC = 625.55 kNm

A -	200.0											_
Dict from Soffit	No of		Dist from	Dist from			Spb	Remark	fpb	Т	Moment about	
Distrion Solut	Strand	Fe	Тор	Neutral	utral ^{Spe Sp}	N/mm2			KN .	Neutral Axis		
60	9	843.70	1490	-1236.5	0.043266	0.017072	0.060338	Slope 3	1617.39	-1455.652	-1799.91]
110	9	843.70	1440	-1186.5	0.043266	0.016382	0.059648	Slope 3	1617.39	-1455.652	-1727.13	1
160	9	843.70	1390	-1136.5	0.043266	0.015691	0.058958	Slope 3	1617.39	-1455.652	-1654.35]
									-	-4366.957	-5181.39	[−] kNm

% Diff Bet C & T = 0.003113702

Mu = 5806.95 kNm (= 625.55 + 5181.39)

From example 17,

M_{DL} = 1077.81 kNm

M_{IL} = 970.19 kNm

Applied Ultimate Moment = _3061.238 kNm < 5,806.95 kNm, O k