

Prestressed Concrete Design (SAB 4323)

Preliminary Design for Flexure

Assoc. Prof. Baderul Hisham Ahmad

Innovative.Entrepreneurial.Global

ocw.utm.my

Analysis or Design?

<u>Analysis</u>

- Check if the specified design criteria at every section along the member are satisfied
- Beam's description and characteristics given (loading, span, cross sectional dimensions, material properties etc)

Design :

- Reverse process of analysis
- Involves finding of member size required and details of prestressing force and tendon profile

Basic Inequalities

Inequalities At Transfer

Inequalities At Service

• Consider at mid span of a simply supported beam

Inequalities At Service

Writing down all the inequalities: $\alpha P_i / A - \alpha P_i e / z_1 + M_i / z_1 > = f_{++}$(1) $\alpha P_i / A + \alpha P_i e / z_2 - M_i / z_2 < = f_{ct}$(2) $\beta P_i / A - \beta P_i e / z_1 + M_s / z_1 < = f_{cs}$(3) $\beta P_i / A + \beta P_i e / z_2 - M_s / z_2 > = f_{ts}$(4) By combining inequalities (1) & (3) and (2) & (4) $z_1 > = (\alpha M_s - \beta M_i) / (\alpha f_{cs} - \beta f_{tt})$(5) $z_2 > = (\alpha M_s - \beta M_i) / (\beta f_{ct} - \alpha f_{ts})$(6) Beware of +ve and -ve values!

Derive (5) & (6)!

Section Selection

- From (5) & (6), a suitable section can be selected
- Both z₁ and z₂ depend on M_i and M_s
- M_i and M_s can be determined if the member self weight is known
- However, the self weight can only be determined if the section size (hence z_1 and z_2) is known
- In general, the solution can be obtained using trial and error method or using standard section

Section Adequacy Flowchart

I BEAMS

DIMENSI	ONS AN	ID SECT	ION PROPERTIES	S OF 1-5, 1-6 AN	D 1-7 BEAMS
DESCRIPTIC		M TYPE	1.5	1.6	1.7
MAX LENG	STH L	(m)	18.3	19.8	21.3
DEPTH	D	(mm)	965	1040	1120
WEIGHT	W	(kN/m)	6.63	6.91	7.20
SECTIONA AREA	L A	(mm²)	272625	283875	295875
NEUTRAL	Yt	(mm)	538	579	623
AXIS	Yb	(mm)	427	461	497
MOMENT (NERTIA	OF Ixx	(mm4)	28.15 x 10°	34.46 x 10°	42.09 x 10°
SECTION	Zt	(mm³)	52.32 x 10 ⁶	59.56 x 10 ⁶	67.67 x 10⁵
MODULII	Zb	(mm³)	65.80 x 10 ⁶	74.76 x 10⁵	84.68 x 10⁵

M BEAMS

DIME	NSION	S AND	SECTION PRO	PERTIES OF M	2, M3, M4
DESCRIPTIC	MBEAN		M2	M3	M4
SPAN RAN	GE L	(m)	16.0 - 18.0	17.5 - 19.5	19.0 - 21.5
DEPTH	D	(mm)	720	800	880
WEIGHT	W	(kN/m)	7.71	8.49	9.26
SECTIONA AREA	L A	(mm²)	316650	348650	380650
NEUTRAL	Yt	(mm)	455	490	527
AXIS	Yb	(mm)	265	310	353
MOMENT NERTIA	OF Ixx	(mm ⁴)	16.20 x 10°	23.02 x 10°	30.94 x 10°
SECTION	Zt	(mm³)	35.64 x 10€	46.96 x 10 [€]	58.77 x 10 [€]
MODULII	Zb	(mm³)	61.04 x 10 ⁶	74.31 x 10€	87.57 x 10 [€]

DIMENSIONS AND SECTION PROPERTIES OF M5, M6, M7						
DESCRIPTIO	M B N	EAN		M5	M6	M7
SPAN RAN	GE	L	(m)	20.5 - 22.5	22.0 - 24.0	23.5 - 26.0
DEPTH		D	(mm)	960	1040	1120
WEIGHT		W	(kN/m)	8.64	9.42	10.20
SECTIONA AREA	L	A	(mm²)	355050	387050	419050
NEUTRAL		Yt	(mm)	603	631	660
AXIS		Yb	(mm)	357	409	460
MOMENT NERTIA	OF	xx	(mm4)	35.81 x 10°	47.56 x 10°	60.46 x 10°
SECTION		Zt	(mm³)	59.39 x 10⁵	75.39 x 10 ⁶	91.53 x 106
MODULII		Zb	(mm³)	100.33 x 10 ⁶	116.23 x 10 ⁶	131.54 x 10 ⁶

Example 3-1

A 20m span simply supported beam for a bridge construction is to be designed using class 1 post-tensioned prestressed concrete. The beam is subjected to a characteristic live load of 20kN/m in addition to its own self weight. The initial prestressing force is 2000kN with an eccentricity of 500mm. The short and long term losses of prestress are estimated to be 10% and 20% respectively. With $f_{ci} = 30 \text{ N/mm}^2$ and $f_{cu} = 50 \text{ N/mm}^2$ select a suitable section for the beam using,

- 1. Rectangular section
- 2. Standard M beams

<u>Solution</u>

Given:

- Span = 20m; f_{ci} = 30 N/mm² ; f_{cu} = 50 N/mm² and class 1 category
- $P_i = 2000 kN and e = 500 mm$
- α = 0.9 , β = 0.8

Stress Limits:

At transfer

 $f_{ct} = 0.5 f_{ci} = 15 \text{ N/mm}^2 \text{ and } f_{tt} = 1.0 \text{ N/mm}^2$ At service

 $f_{cs} = 0.33 f_{cu} = 16.5 \text{ N/mm}^2 \text{ and } f_{ts} = 0 \text{ N/mm}^2$

<u>Solution</u>

1) <u>Rectangular Section</u>

try: b = 300mm and h = 1300 mm A = 390000 mm²; $z_1 = z_2 = bh^2/6 = 84.5 \times 10^6 \text{ mm}^3$ Self wt, $W_{sw} = 24 \times 0.39 = 9.36 \text{ kN/m}$ $M_i = 9.36 \times 20^2/8 = 468 \text{ kNm}$ Total service load, $W_s = 20 + 9.36 = 29.36 \text{ kN/m}$ $M_s = 29.36 \times 20^2/8 = 1468 \text{ kNm}$ Design as RC Size: 200 x 2500 2 layers of 3T25 I/d actual = 8.2 I/d all = 11.9

Required Section Modulus from (5): $z_1 > = (0.9x1468-0.8x468)x10^6/(0.9x16.5-0.8(-1))$ $> = 60.50 \times 10^6 \text{ mm}^3$ $z_1 \text{ provided} = 84.5 \times 10^6 \text{ mm}^3 → \text{Ok}$ from (6): $z_2 > = (0.9x1468-0.8x468)x10^6/(0.8x15.0-0.9(0))$ $> = 78.90 \times 10^6 \text{ mm}^3$ $z_2 \text{ provided} = 84.5 \times 10^6 \text{ mm}^3 → \text{Ok}$

Solution

2) <u>Standard Section – M beams</u> try: M6 beams $A = 387050 \text{ mm}^2$; $z_1 = 75.39 \times 10^6 \text{ mm}^3$; $z_2 = 116.23 \times 10^6 \text{ mm}^3$ Self wt, $W_{sw} = 9.42 \text{ kN/m}$ $M_i = 9.42 \times 20^2/8 = 471 \text{ kNm}$ Total service load, $W_s = 20 + 9.43 = 29.42 \text{ kN/m}$ $M_s = 29.42 \times 20^2/8 = 1471 \text{ kNm}^2$

 $\begin{array}{l} \hline Required Section Modulus \\ from (5): z_1 > = (0.9x1471-0.8x471)x10^6/(0.9x16.5-0.8(-1)) \\ > = 60.52 \times 10^6 \, \text{mm}^3 \\ z_1 \, \text{provided} = 75.39 \times 10^6 \, \text{mm}^3 \quad \clubsuit \, \text{Ok} \\ from (6): z_2 > = (0.9x1471-0.8x471)x10^6/(0.8x15.0-0.9(0)) \\ > = 78.93 \times 10^6 \, \text{mm}^3 \\ z_2 \, \text{provided} = 116.23 \times 10^6 \, \text{mm}^3 \quad \clubsuit \, \text{Ok} \end{array}$

Design of Prestress Force

- Rearranging inequalities (1) to (4) will yield inequalities for the required prestress force, for a given value of eccentricity
- Thus the new inequalities are:

$$P_{i} > = (z_{1}f_{tt} - M_{i}) / \alpha(z_{1}/A - e).....(7)$$

$$P_{i} < = (z_{2}f_{ct} + M_{i}) / \alpha(z_{2}/A + e)....(8)$$

$$P_{i} < = (z_{1}f_{cs} - M_{s}) / \beta(z_{1}/A - e)....(9)$$

$$P_i > = (z_2 f_{ts} + M_s) / \beta(z_2 / A + e)....(10)$$

• The inequalities sign in (7) & (9) will be reversed if the denominator becomes -ve

Example 3-2

A post-tensioned prestressed concrete bridge deck is in the form of a solid slab with a depth of 525 mm and is simply supported over 20 m. It carries a service load of 10.3 kN/m². If the maximum eccentricity of the tendons at midspan is 75 mm above the soffit, find the minimum value of the prestress force required. Use the following information:

> f_{ct} = 20.0 N/mm² and f_{tt} = 1.0 N/mm² f_{cs} = 16.7 N/mm² and f_{ts} = 0 N/mm² α = 0.9 , β = 0.8

Solution

Solution

Minimum Prestressing Force

<u>Sectional</u>	Properties 1 4 1										
A=	5.25E+05	mm2	Z,/A =	87.50	mm	Pi	>=	(z1 ftt – M	i) /α-(z1	/A−e)	(7)
=	1.34E+11	mm4	Z ₂ /A =	87.50	mm	Pi	<=	(z2 fct + M	li) / ∞(z2	2/A + e)	(8)
y ₁ =	588	mm	Z ₁ ftt =	-4.59E+07	Nmm	Pi	<=	(z1 fcs – M	li)/ββ(z	1/A – e)	(9)
y ₂ =	912	mm	Z ₂ fct =	9.19E+08	Nmm	Pi	>=	(z2 fts + M	i) / β(zź	2/A + e)	(10
Z1 =	4.594E+07	mm3	Z ₁ fcs =	7.67E+08	Nmm						
Z ₂ =	4.594E+07	mm3	Z ₂ fts =	0.00E+00	Nmm						
Limiting S	<u>tresses</u>										
ftt =	-1.00	N/mm2	cx(Z ₁ /A - e) =	-90.45	mm	===> Ineq (7)	chan	ge from >=	to <=		
fct =	20.00	N/mm2	ox(Z ₂ /A + e) =	247.95	mm						
fts =	0.00	N/mm2	β(Z ₁ /A - e) =	-80.40	mm	> ineq (9) d	hang	je from <= t	0 >=		
fcs =	16.70	N/mm2	$\beta(Z_2/A + e) =$	220.40	mm						
Prestress	ing Properties										
cx =	0.9		Z ₁ ftt - Mi =	-6.76E+08	Nmm	Pi	<=	7473.43	kN	(7)	
/S =	0.8		Z ₂ fct + Mi =	1.55E+09	Nmm	Pi	<=	6246.31	kN	(8)	
$M_i =$	630	kNm	Z ₁ fcs - Ms =	-3.78E+08	Nmm	Pi	>=	4699.25	kN	(9)	
M _t =	1145	kNm	Z ₂ fts + Ms =	1.15E+09	Nmm	Pi	>=	5195.01	kN	(10)	
е =	188	mm				Choose Pi min	=	5195.01	kN		

- First explored by Magnel, a Belgian engineer
- Plot of e versus P_i produced a hyperbolic curve
- Plot of e versus 1/P_i produced a straight line
- Therefore, we will use e versus 1/P_i
- Sign convention:
 - X-axis represents 1/P_i
 - Y-axis represents e
 - +ve Y-axis (e values) pointing downwards (if possible)
 - +ve X-axis (1/P_i values) pointing to the right

- Rearranging inequalities (7) to (10):
- $e \le (M_i z_1 f_{tt}) / \alpha P_i + z_1 / A_{tt} (1 m = (M_i z_1 f_{tt}) / \alpha, c = z_1 / A_{tt})$
- $e \le (M_i + z_2 f_{ct}) / \alpha P_i z_2 / A_{ct} (12 m = (M_i z_2 f_{ct}) / \alpha, c = -z_2 / A_{ct})$
- $e \ge (M_s z_1 f_{cs}) / \beta P_i + z_1 / A_{cs} / \alpha, c = z_1 / A$
- $e \ge (M_s + z_2 f_{ts}) / \beta P_i z_2 / A_{max} (14 m = (M_s z_2 f_{ts}) / \alpha, c = -z_2 / A_{ts})$
- Note that $z_1/A = k_b$ and $z_2/A = k_t$ i.e lower and upper limits of the central kern respectively

The above inequalities can be written as: $e \le mx + c$ or $e \ge mx + c$ where m is the gradient and c is the vertical axis intercept

- The maximum permissible eccentricity,
 e_{mp} = y₂ (h_c)_{min}.....(15)
- Where (h_c)_{min} is the minimum concrete cover to c.g.s. which must conform to durability and fire protection requirements
- Therefore, $e < = e_{mp}$

Cover & Eccentricity

TYPICAL SECTION (Y4)

Example 3-3

It is required to construct a building floor using standard precast, pre-tensioned units of double T-section (Class 2) as shown on next slide. Given the following information:

Span = 10m (simply supported)

Dead load due to floor finish = 1.5 kN/m^2

Live load = 3.0 kN/m^2

- (a) Choose a suitable double T-section
- (b) Construct a Magnel diagram to determine the minimum prestressing force for the tendon.

Example 3-3

SECTION	PROPERTIES	2400 WI	DE MODULE	ES		
SECTION	AREA x 10 ³ mm ³ x 10 ³	Y _e mm	Ix10"mm* x 10 ⁹	SELF \ kPa	VEIGHT kg/m	
200 x 2400	184	142	0.52	1.92	468	
250 x 2400	202	177	0.99	2.11	515 🧹	Try this section
300 x 2400	220	211	1.67	2.29	561	
350 x 2400	237	244	2.55	2.47	605	
400 x 2400	254	276	3.67	2.64	647	
450 x 2400	269	308	5.03	2.81	687	
500 x 2400	285	340	6.40	2.97	725	

Solution

Section Adequacy

Try Section 250 x 2400

Sectional Properties

A =	2.02E+05	mm2	αM _s =	176.04	kNm	
=	9.90E+08	mm4	<i>ι</i> βΜ _i =	48.48	kNm	
y ₁ =	73	mm				
y ₂ =	177	mm	cxf _{cs} =	14.85	N/mm ²	
Z ₁ =	1.356E+07	mm3	$\alpha f_{ts} =$	-2.86	N/mm ²	
Z ₂ =	5.593E+06	mm3	,βf _{tt} =	-2.16	N/mm ²	
Limiting Str	resses		βf _{at} =	18.00	N/mm ²	
ftt =	-2.70	N/mm2				
fct =	18.00	N/mm2	z 1 > =	$(\alpha Ms - \beta)$	Mi)/(αf	$cs - \beta f$ tt)(5)
fts =	-3.18	N/mm2	z2>=	$(\alpha Ms - \beta)$	Mi) / (βf	$\operatorname{ct} - \alpha \boldsymbol{f} \operatorname{ts} $)(6)
fcs=	16.50	N/mm2				
<u>Prestressin</u>	ig Properties					
α =	0.9		z1 >=	7.50E+06	i	
β=	0.8		z2 >=	6.11E+06	i	
		_				
M _i =	60.6	kNm	Wsw = 0.202	x 24 = 4.85	5 kN/m; Mi	$i = 4.85 \text{ x} \ 10 \text{ x} \ 10 / 8 = \ 60.6 \text{ kNm}$
M _s =	195.6	kNm	Ws = (1.5 + 3.0))) x 2.4 + 4	. <mark>85 = 15.65</mark>	5 kN/m
			Ms = 15.65 x	100/8 = 19	5.6 kNm	
		-				

Solution

Section Adequacy

Try Section 300 x 2400

Sectional Properties

Sectional Properties					
A =	2.20E+05	mm ²			
=	1.67E+09	mm ⁴			
y ₁ =	89	mm			
y ₂ =	211	mm			
Z ₁ =	1.876E+07	mm ³			
Z ₂ =	7.915E+06	mm ³			
<u>Prestressin</u>	<u>ig Properties</u>				
α =	0.9				
β=	0.8				
M _i =	68.793	kNm			
M _s =	203.793	kNm			
cover=	35	mm			
e _{max} =	176	mm			
<u>Limiting Str</u>	resses	_			
ftt =	-2.70	N/mm ²			
fct =	18.00	N/mm ²			
fts=	-3.18	N/mm ²			
fcs =	16.50	N/mm ²			

$(-z_1 f_t + M_i)/\alpha =$	1.33E+08
$(z_2 f_{ct} + M_j)/\alpha =$	2.35E+08
$(M_s - z1f_{cs})/\beta =$	-1.32E+08
$(M_s + z2f_s)/\beta =$	2.23E+08
k _b = Z ₁ /A =	85
$k_{t} = Z_{2}/A =$	36

ocw.utm.my

Solution

$e \le (Mi - zlf tt)/\alpha Pi + zl/A(11)$	
$e \le (Mi + z_2 f c_1)/\alpha Pi - z_2/A(12)$	
$e \ge (Ms - z l f c s) / \beta P i + z l / A(13)$	
$e \ge (Ms + z_2 f t_s)/\beta Pi - z_2/A(14)$	

Pi (kN)	1/Pi	1/Pi x 10 ³	е	Ineq.
1000	0.001	1	218	(11)
1000	0.001	1	199	(12)
1000	0.001	1	-47	(13)
1000	0.001	1	187	(14)

<u>Points on Graph</u>

L=	10.000	m
Gk =	3.600	kN/m
Qk =	7.200	kN/m
$W_{sw} =$	5.503	kN/m
slab L=	2.400	mm
M _i =	68.793	kNm
M _s =	203.793	kNm

-	х	у
pt12	1	199
pt14	1	187
pt11	1	218
pt13	1	-47
emp	0	176
kb	0	85
kt	0	36

Solution – Manual Plotting

Solution – Using Graph v4.3

Solution – Using Inequalities

Minimum Prestressing Force

A = 2.20E+05 mm2 Z ₁ /A = 85.29 mm Pi >= (z1 ftt − Mi) / α(z1/A − e)	(7)
$I = 1.67E+09 \text{ mm4}$ $Z_2/A = 35.98 \text{ mm}$ Pi <= (z2 fct + Mi) / α (z2/A + e)	(8)
y ₁ = 89 mm Z ₁ ftt = -5.07E+07 Nmm Pi <= (z1 fcs – Ms) / β(z1/A – e)	(9)
$y_2 = 211 \text{ mm} Z_2 \text{fct} = 1.42 \text{E} + 08 \text{ Nmm} Pi \ge (z2 \text{ fts} + \text{Ms}) / \beta(z2/\text{A} + e)$	(10)
Z ₁ = 1.876E+07 mm3 Z ₁ fcs = 3.10E+08 Nmm	
Z ₂ = 7.915E+06 mm3 Z ₂ fts = -2.52E+07 Nmm	
Limiting Stresses Pi <= 1463.24 kN (7)
ftt = -2.70 N/mm2 Z ₁ ftt - Mi = -1.19E+08 Nmm Pi <= 1107.35 kN (8)
fct = $18.00 \text{ N/mm2} Z_2 \text{fct} + \text{Mi} = 2.11\text{E} + 08 \text{ Nmm}$ Pi >= -1458.15 kN (9)
fts = -3.18 N/mm2 Z ₁ fcs - Ms = 1.06E+08 Nmm Pi >= <u>1053.33</u> kN (*	10)
fcs = 16.50 N/mm2 Z ₂ fts + Ms = 1.79E+08 Nmm Choose Pi min = 1053.33 kN	
Prestressing Properties	
α = 0.9 α (Z ₁ /A - e) = -81.64 mm => Ineq (7) change from >= to <=	
_β = 0.8 α(Z ₂ /A + e) = 190.78 mm	
M _I = 68.793 kNm β(Z ₁ /A - e) = -72.57 mm> Ineq (9) change from <= to >=	
M _s = 203.793 kNm β(Z ₂ /A + e) = 169.58 mm	
e = 176 mm	

A post-tensioned precast concrete beam (shown in next slide), simply supported over a span of 29.4m carries a total uniformly distributed service load of 35.8 kN/m in addition to its own self weight. The following information is given:

- Class 1 category; fci = 45 N/mm²; fcu = 50 N/mm²
- A = 723700 mm²; y2= 876 mm
- $-I = 255.34 \times 10^{9} \text{mm}^{4}$; cover to tendon = 152 mm

Take unit weight of concrete, g as 25 kN/m³

Construct a Magnel diagram and find the minimum prestress force. Compare your results with those obtained using the inequalities.

ocw.utm.my Solution

Sectional Properties						
A=	7.24E+05	mm ²				
=	2.55E+11	mm⁴				
y ₁ =	774	mm				
y ₂ =	876	mm				
Z ₁ =	3.299E+08	mm ³				
Z2 =	2.915E+08	mm ³				
Prestressin	ng Properties					
α=	0.9					
β=	0.8					
M _I =	1954.804	kNm				
M _s =	5822.815	kNm				
cover =	152	mm				
e _{max} =	724	mm				
Limiting Str	resses					
ftt =	-1.00	N/mm ²				
fct =	22.50	N/mm ²				
fts =	0.00	N/mm ²				
fcs=	16.50	N/mm ²				

L =	29.400	m
Gk =	35.800	kN/m
Qk =	0.000	kN/m
W _{sw} =	18.093	kN/m
Ws =	53.893	kN/m
M _i =	1954.80	kNm
M _s =	5822.82	kNm

Solution

Section Adequacy

αM₅ =	5240.53	kNm	z1>=	$(\alpha Ms - \beta Mi) / (o$	$\iota f cs - \beta f tt$)(5)	
,8M, =	1563.84	kNm	z2 > =	$(\alpha Ms - \beta Mi) / (\beta$	f ct – α f ts)(6)	
cxf _{cs} =	14.85	N/mm ²	z1 >=	2.35E+08	ok	
∝f _{ts} =	0.00	N/mm ²	z2 >=	2.04E+08	ok	
ßf _{tt} =	-0.80	N/mm ²				
βf _{ct} =	18.00	N/mm ²				

Magnel Diagram

$(z f + M)/\alpha =$	2 54 54 0 9	P(kN)	1/P	e ₁₁	e ₁₂	e ₁₃	e ₁₄	e _{max}	1/P x 10 ⁻⁸
$(-2_1)_{\pm} + (w_i)/\alpha =$	2.3465100	infiniti	0	456	-403	456	-403	724	0
$(Z_2T_{ct} + M_i)/\alpha =$	9.46E+09	1000	0.000001	2994	9056	930	6876	724	1.00
$(IVI_s - ZIT_{cs})/\beta =$	4.74E+08	750	1.33E-06	3841	12209	1088	9302	724	1.33
$(M_{s} + z2f_{ts})/\beta =$	7.28E+09	500	0.000002	5533	18515	1405	14154	724	2.00
k _b = Z ₁ /A =	456	250	0.000004	10610	37434	2353	28711	724	4.00
k _t = Z ₂ /A =	403	100	0.00001	25841	94188	5200	72382	724	10.00

Solution – Using MS Excel

Solution – Using Inequalities

$Z_{1}/A =$ $Z_{2}/A =$ $Z_{1}ft =$ $Z_{2}fct =$	455.85 402.77 -3.30E+08 6.56E+09	mm mm Nmm Nmm			<u>Usin</u>	<u>g Inequ</u>	<u>alities</u>		
7.fts =	0.00E+00	Nmm	Г	x(Z1/A - e) = -24	1.34 mm	====>	Ineg (7)	change from >= to <=
22113	0.002.00	ranan		α(Z ₂ /A + e) = 101	1.09 mm			9
Z ₁ ftt - Mi =	-2.28E+09	Nmm		ß(Z,/A - e)= -214	1.52 mm	====>	Inea (9)	change from <= to >=
Z_2 fct + Mi =	8.51E+09	Nmm		β(Z2/A + e) = 901	.42 mm			
Z ₁ fcs - Ms =	-3.80E+08	Nmm							
Z ₂ fts + Ms =	5.82E+09	Nmm							
			Pi	>=	(z1 ftt – M	i) / ca(z1/A	– e)	(7)	
			PI	ς=		11) / α(ΖΖ/Α 1	+ e)	(0)	
			PI	<=	(ZTTCS - I)	is) / p(z1//	4 – e)	(9)	
			PI	>=		is) / p(zz/#	(+e)	(10)	
			0		0.400.00		(7)		
			Pi	<=	9466.83	kN	(7)		
			Pi	<=	8394.89	kN	(8)		
			Pi	>=	1769.14	kN	(9)		
			Pi	>=	6459.64	kN	(10)		
			(Choose Pi	min =	6459.64	kN		

Solution Using Graph V4.3

