Prestressed Concrete Design (SAB 4323)

Preliminary Design for Flexure

Assoc. Prof. Baderul Hisham Ahmad

Analysis or Design?

Analysis

- Check if the specified design criteria at every section along the member are satisfied
- Beam's description and characteristics given (loading, span, cross sectional dimensions, material properties etc)

Design :

- Reverse process of analysis
- Involves finding of member size required and details of prestressing force and tendon profile

Basic Inequalities

Inequalities At Transfer

- Consider at mid span of a simply supported beam

Inequalities At Service

- Consider at mid span of a simply supported beam

Inequalities At Service

Writing down all the inequalities:

$$
\begin{align*}
& \alpha \mathrm{P}_{\mathrm{i}} / \mathrm{A}-\alpha \mathrm{P}_{\mathrm{i}} \mathrm{e} / \mathrm{z}_{1}+\mathrm{M}_{\mathrm{i}} / \mathrm{z}_{1}>=f_{\mathrm{tt}}(1) \\
& \alpha \mathrm{P}_{\mathrm{i}} / \mathrm{A}+\alpha \mathrm{P}_{\mathrm{i}} \mathrm{e} / \mathrm{z}_{2}-\mathrm{M}_{\mathrm{i}} / \mathrm{z}_{2}<=f_{\mathrm{ct}}(2) \\
& \beta P_{i} / A-\beta P_{i} e / z_{1}+M_{s} / z_{1}<=f_{c s} \text {..................(3) } \\
& \beta P_{i} / A+\beta P_{i} e / z_{2}-M_{s} / z_{2}>=f_{t s} \tag{4}
\end{align*}
$$

By combining inequalities (1) \& (3) and (2) \& (4)

$$
\begin{align*}
& z_{1}>=\left(\alpha M_{\mathrm{s}}-\beta \mathrm{M}_{\mathrm{i}}\right) /\left(\alpha f_{\mathrm{cs}}-\beta f_{\mathrm{tt}}\right) . \tag{5}\\
& z_{2}>=\left(\alpha \mathrm{M}_{\mathrm{s}}-\beta \mathrm{M}_{\mathrm{i}}\right) /\left(\beta f_{\mathrm{ct}}-\alpha f_{\mathrm{ts}}\right) . \tag{6}
\end{align*}
$$

Beware of + ve and - ve values!

Section Selection

- From (5) \& (6), a suitable section can be selected
- Both z_{1} and z_{2} depend on M_{i} and M_{s}
- M_{i} and M_{s} can be determined if the member self weight is known
- However, the self weight can only be determined if the section size (hence z_{1} and z_{2}) is known
- In general, the solution can be obtained using trial and error method or using standard section

Section Adequacy Flowchart

BEAMS

DIMENSIONS AND SECTION PROPERTIES OF 1-5, 1-6 AND 1-7 BEAMS				
\qquad		1.5	1.6	1.7
MAX LENGTH L (m)		18.3	19.8	21.3
DEPTH	D (mm)	965	1040	1120
WEIGHT	W (kN/m)	6.63	6.91	7.20
$\begin{aligned} & \text { SECTIONAL } \\ & \text { AREA } \end{aligned}$	A $\left(\mathrm{mm}^{2}\right)$	272625	283875	295875
NEUTRAL AXIS	Yt (mm)	538	579	623
	Yb (mm)	427	461	497
MOMENT OF lox (mm^{4}) NERTIA		28.15×10^{5}	34.46×10^{5}	42.09×10^{5}
SECTION MODULI	$\mathrm{Zt}\left(\mathrm{mm}^{3}\right)$	52.32×10^{6}	59.56×10^{6}	67.67×10^{6}
	$\mathrm{Zb}\left(\mathrm{mm}^{3}\right)$	65.80×10^{6}	74.76×10^{6}	84.68×10^{6}

M BEAMS

DIMENSIONS AND SECTION PROPERTIES OF M2, M3, M4				
M BEAM TYPE DESCRIPTION		M2	M3	M4
SPANRANGE L (m)		16.0-18.0	17.5-19.5	19.0-21.5
DEPTH	D (mm)	720	800	880
WEIGHT	W (kN/m)	7.71	8.49	9.26
SECTIONAL AREA	A (mm ${ }^{2}$)	316650	348650	380650
NEUTRAL AXIS	Yt (mm)	455	490	527
	Yb (mm)	265	310	353
MOMENT OF lxx (mm) NERTIA		16.20×10^{5}	23.02×10^{8}	30.94×10^{9}
SECTION MODULII	$\mathrm{Zt}\left(\mathrm{mm}^{3}\right)$	35.64×10^{6}	46.96×10^{6}	58.77×10^{6}
	Zb (mm^{3})	61.04×10^{6}	74.31×10^{6}	87.57×10^{6}

DIMENSIONS AND SECTION PROPERTIES OF M5, M6, M7				
MBEAM TYPE DESCRIPTION		M5	M6	M7
SPAN RANGE L (m)		20.5-22.5	22.0-24.0	23.5-26.0
DEPTH	D (mm)	960	1040	1120
WEIGHT	W (kN/m)	8.64	9.42	10.20
SECTIONAL AREA	A $\left(\mathrm{mm}^{2}\right)$	355050	387050	419050
NEUTRAL AXIS	Yt (mm)	603	631	660
	Yb (mm)	357	409	460
MOMENT OF lxx (mm) NERTIA		35.81×10^{8}	47.56×10^{2}	60.46×10^{2}
SECTION MODUL II	Zt (mm^{3})	59.39×10^{6}	75.39×10^{6}	91.53×10^{5}
	$\mathrm{Zb}\left(\mathrm{mm}^{3}\right)$	100.33×10^{6}	116.23×10^{6}	131.54×10^{5}

Example 3-1

A 20 m span simply supported beam for a bridge construction is to be designed using class 1 post-tensioned prestressed concrete. The beam is subjected to a characteristic live load of $20 \mathrm{kN} / \mathrm{m}$ in addition to its own self weight. The initial prestressing force is 2000 kN with an eccentricity of 500 mm . The short and long term losses of prestress are estimated to be 10% and 20% respectively. With $\mathrm{f}_{\mathrm{ci}}=30 \mathrm{~N} / \mathrm{mm}^{2}$ and $\mathrm{f}_{\mathrm{cu}}=50 \mathrm{~N} / \mathrm{mm}^{2}$ select a suitable section for the beam using,

1. Rectangular section
2. Standard M beams

Solution

Given:
Span $=20 \mathrm{~m} ; \mathrm{f}_{\mathrm{ci}}=30 \mathrm{~N} / \mathrm{mm}^{2} ; \mathrm{f}_{\mathrm{cu}}=50 \mathrm{~N} / \mathrm{mm}^{2}$ and class 1
category
$P_{i}=2000 \mathrm{kN}$ and $\mathrm{e}=500 \mathrm{~mm}$
$\alpha=0.9, \beta=0.8$
Stress Limits:
At transfer
$f_{c t}=0.5 f_{c i}=15 \mathrm{~N} / \mathrm{mm}^{2}$ and $f_{t t}=1.0 \mathrm{~N} / \mathrm{mm}^{2}$
At service
$f_{c s}=0.33 f_{c u}=16.5 \mathrm{~N} / \mathrm{mm}^{2}$ and $f_{t s}=0 \mathrm{~N} / \mathrm{mm}^{2}$

Solution

1) Rectangular Section
try: $b=300 \mathrm{~mm}$ and $\mathrm{h}=1300 \mathrm{~mm}$
$A=390000 \mathrm{~mm}^{2} ; z_{1}=z_{2}=\mathrm{bh}^{2} / 6=84.5 \times 10^{6} \mathrm{~mm}^{3}$
Self $w t, W_{\text {sw }}=24 \times 0.39=9.36 \mathrm{kN} / \mathrm{m}$
$M_{i}=9.36 \times 20^{2} / 8=468 \mathrm{kNm}$
Total service load, $\mathrm{W}_{\mathrm{s}}=20+9.36=29.36 \mathrm{kN} / \mathrm{m}$
$M_{s}=29.36 \times 20^{2} / 8=1468 \mathrm{kNm}$
Required Section Modulus
from (5): $z_{1}>=(0.9 \times 1468-0.8 \times 468) \times 10^{6} /(0.9 \times 16.5-0.8(-1))$
$>=60.50 \times 10^{6} \mathrm{~mm}^{3}$
z_{1} provided $=84.5 \times 10^{6} \mathrm{~mm}^{3} \rightarrow$ Ok
from (6): $z_{2}>=(0.9 \times 1468-0.8 \times 468) \times 10^{6} /(0.8 \times 15.0-0.9(0))$ $>=78.90 \times 10^{6} \mathrm{~mm}^{3}$
z_{2} provided $=84.5 \times 10^{6} \mathrm{~mm}^{3} \rightarrow$ Ok

Solution

2) Standard Section - M beams
try: M6 beams
$A=387050 \mathrm{~mm}^{2} ; \mathrm{z}_{1}=75.39 \times 10^{6} \mathrm{~mm}^{3} ; \mathrm{z}_{2}=116.23 \times 10^{6} \mathrm{~mm}^{3}$
Self $w t, W_{\text {sw }}=9.42 \mathrm{kN} / \mathrm{m}$

$$
\mathrm{M}_{\mathrm{i}}=9.42 \times 20^{2} / 8=471 \mathrm{kNm}
$$

Total service load, $\mathrm{W}_{\mathrm{s}}=20+9.43=29.42 \mathrm{kN} / \mathrm{m}$
$M_{s}=29.42 \times 20^{2} / 8=1471 \mathrm{kNm}$
Required Section Modulus

```
from (5): }\mp@subsup{z}{1}{}>=(0.9\times1471-0.8\times471)\times106/(0.9\times16.5-0.8(-1)
    >=60.52 x 10 mm
    z
from (6): }\mp@subsup{z}{2}{}>=(0.9\times1471-0.8\times471)\times106/(0.8\times15.0-0.9(0)
        >= 78.93 x 106 mm
    z
```


Design of Prestress Force

- Rearranging inequalities (1) to (4) will yield inequalities for the required prestress force, for a given value of eccentricity
- Thus the new inequalities are:

$$
\begin{align*}
& P_{i}>=\left(z_{1} f_{\mathrm{tt}}-M_{i}\right) / \alpha\left(z_{1} / A-e\right) . \tag{7}\\
& P_{i}<=\left(z_{2} f_{c t}+M_{i}\right) / \alpha\left(z_{2} / A+e\right) . . \tag{8}\\
& P_{i}<=\left(z_{1} f_{c s}-M_{s}\right) / \beta\left(z_{1} / A-e\right) . \tag{9}\\
& P_{i}>=\left(z_{2} f_{\mathrm{ts}}+M_{s}\right) / \beta\left(z_{2} / A+e\right) . \tag{10}
\end{align*}
$$

- The inequalities sign in (7) \& (9) will be reversed if the denominator becomes -ve

Example 3-2

A post-tensioned prestressed concrete bridge deck is in the form of a solid slab with a depth of 525 mm and is simply supported over 20 m . It carries a service load of $10.3 \mathrm{kN} / \mathrm{m}^{2}$. If the maximum eccentricity of the tendons at midspan is 75 mm above the soffit, find the minimum value of the prestress force required. Use the following information:

$$
\begin{aligned}
f_{c t} & =20.0 \mathrm{~N} / \mathrm{mm}^{2} \text { and } f_{t t}=1.0 \mathrm{~N} / \mathrm{mm}^{2} \\
f_{c s} & =16.7 \mathrm{~N} / \mathrm{mm}^{2} \text { and } f_{t s}=0 \mathrm{~N} / \mathrm{mm}^{2} \\
\alpha & =0.9, \beta=0.8
\end{aligned}
$$

Solution

$z_{1}=z_{2}=525^{2} \times 10^{3} / 6=45.94 \times 10^{6} \mathrm{~mm}^{3} / \mathrm{m}$
$\mathrm{A}=525 \times 1000=5.25 \times 10^{5} \mathrm{~mm}^{2} / \mathrm{m} ; \mathrm{e}=525 / 2-75=188 \mathrm{~mm}$
$\mathrm{M}_{\mathrm{i}}=24 \times 0.525 \times 20^{2} / 8=630 \mathrm{kNm} / \mathrm{m}$
$M_{s}=630+\left(10.32 \times 20^{2} / 8\right)=1145 \mathrm{kNm} / \mathrm{m}$
$\mathrm{P}_{\mathrm{i}}<=7473.4 \mathrm{kN} .(7)$

Inequalities sign reversed
$\mathrm{P}_{\mathrm{i}}>=4699.25 \mathrm{kN}$.
(9)
$P_{i}>=5195.01 \mathrm{kN}$.
The minimum value of P_{i} which lies within the limits is 5195.01 kN

Solution

Minimum Prestressing Force

Sectional Properties		
$\mathrm{A}=$		$5.25 \mathrm{E}+05$
mm 2		
$\mathrm{I}=$	$1.34 \mathrm{E}+11$	mm 4
$\mathrm{y}_{1}=$	588	mm
$\mathrm{y}_{2}=$	912	mm
$\mathrm{Z}_{1}=$	$4.594 \mathrm{E}+07 \mathrm{~mm} 3$	
$\mathrm{Z}_{2}=$	$4.594 \mathrm{E}+07 \mathrm{~mm} 3$	

Limiting Stresses

$\mathrm{ft}=$	-1.00	$\mathrm{~N} / \mathrm{mm2}$
$\mathrm{fct}=$	20.00	$\mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{fts}=$	0.00	$\mathrm{~N} / \mathrm{mm2}$
$\mathrm{fcs}=$	16.70	$\mathrm{~N} / \mathrm{mm2} 2$

Prestressing Properties

$\alpha=$	0.9
$\beta=$	0.8
$M_{1}=$	630
$\mathrm{M}_{4}=$	1145
$\mathrm{e}=$	188

$Z_{1} / A=$	87.50	mm
$Z_{2} / A=$	87.50	mm
Z_{1} ftt $=$	$-4.59 \mathrm{E}+07$	Nmm
Z_{2} fct $=$	$9.19 \mathrm{E}+08$	Nmm
Z_{1} fcs $=$	$7.67 \mathrm{E}+08$	Nmm
Z_{2} fs $=$	$0.00 \mathrm{E}+00$	Nmm

Magnel Diagram

- First explored by Magnel, a Belgian engineer
- Plot of e versus P_{i} produced a hyperbolic curve
- Plot of e versus $1 / P_{i}$ produced a straight line
- Therefore, we will use e versus $1 / P_{i}$
- Sign convention:
- X-axis represents $1 / P_{i}$
- Y-axis represents e
- +ve Y-axis (e values) pointing downwards (if possible)
- +ve X -axis $\left(1 / \mathrm{P}_{\mathrm{i}}\right.$ values) pointing to the right

Magnel Diagram

- Rearranging inequalities (7) to (10):
- $\mathrm{e}<=\left(\mathrm{M}_{\mathrm{i}}-\mathrm{z}_{1} f_{\mathrm{tt}}\right) / \alpha \mathrm{P}_{\mathrm{i}}+\mathrm{z}_{1} / \mathrm{A} \ldots \ldots\left(12 \mathrm{~m}=\left(\mathrm{M}_{\mathrm{i}}-\mathrm{z}_{\mathrm{t}} \mathrm{f}_{\mathrm{t}}\right) / \alpha, \mathrm{c}=\mathrm{z}_{1} / \mathrm{A}\right.$

- $\quad \mathrm{e}>=\left(\mathrm{M}_{\mathrm{s}}-\mathrm{z}_{1} f_{\mathrm{cs}}\right) / \beta \mathrm{P}_{\mathrm{i}}+\mathrm{z}_{1} / \mathrm{A} \ldots \ldots \ldots \ldots\left(13 \mathrm{~m}=\left(\mathrm{M}_{5}-\mathrm{z}_{1} \mathrm{f}_{\mathrm{s}}\right) / \alpha, \mathrm{c}=\mathrm{z}_{1} / \mathrm{A}\right.$

- Note that $z_{1} / A=k_{b}$ and $z_{2} / A=k_{t}$ i.e lower and upper limits of the central kern respectively

The above inequalities can be written as:
$e<=m x+c$ or $e>=m x+c$
where m is the gradient and c is the vertical axis intercept

Magnel Diagram

- The maximum permissible eccentricity,
- Where $\left(\mathrm{h}_{\mathrm{c}}\right)_{\text {min }}$ is the minimum concrete cover to c.g.s. which must conform to durability and fire protection requirements
- Therefore, $\mathrm{e}<=\mathrm{e}_{\mathrm{mp}}$

Cover \& Eccentricity

$$
\begin{aligned}
& \mathrm{hc}=\sum \mathrm{Aps} * \mathrm{y} / \sum \mathrm{Aps} \\
& \mathrm{e}=\mathrm{y}_{2}-\mathrm{hc}
\end{aligned}
$$

TYPICAL SECTION (Y4)

Magnel Diagram

Magnel Diagram

Example 3-3

It is required to construct a building floor using standard precast, pre-tensioned units of double T-section (Class 2) as shown on next slide. Given the following information:
$\mathrm{f}_{\mathrm{cu}}=50 \mathrm{~N} / \mathrm{mm}^{2} ; \mathrm{f}_{\mathrm{ci}}=36 \mathrm{~N} / \mathrm{mm}^{2}$
Span $=10 \mathrm{~m}$ (simply supported)
Dead load due to floor finish $=1.5 \mathrm{kN} / \mathrm{m}^{2}$
Live load $=3.0 \mathrm{kN} / \mathrm{m}^{2}$
(a) Choose a suitable double T-section
(b) Construct a Magnel diagram to determine the minimum prestressing force for the tendon.
© C UTM

Example 3-3

SECTION PROPERTIES 2400 WIDE MODULES

Solution

Section Adequacy

Try Section 250×2400

Sectional Properties

| $\mathrm{A}=$ | $2.02 \mathrm{E}+05 \mathrm{mm2}$ | $\alpha \mathrm{M}_{\mathrm{s}}=$ | 176.04 | kNm |
| ---: | :---: | :---: | :--- | :---: | :--- |
| $\mathrm{I}=$ | $9.90 \mathrm{E}+08 \mathrm{mm4}$ | $\beta \mathrm{M}_{\mathrm{i}}=$ | 48.48 | kNm |
| $\mathrm{y}_{1}=$ | 73 mm | | | |
| $\mathrm{y}_{2}=$ | 177 mm | $\alpha f_{c s}=$ | 14.85 | $\mathrm{~N} / \mathrm{mm}^{2}$ |
| $\mathrm{Z}_{1}=$ | $1.356 \mathrm{E}+07 \mathrm{~mm} 3$ | $\alpha f_{\mathrm{ts}}=$ | -2.86 | $\mathrm{~N} / \mathrm{mm}^{2}$ |
| $\mathrm{Z}_{2}=$ | $5.593 \mathrm{E}+06 \mathrm{~mm} 3$ | $\beta f_{\mathrm{t}}=$ | -2.16 | $\mathrm{~N} / \mathrm{mm}^{2}$ |
| Limiting Stresses | $\beta f_{\mathrm{ct}}=$ | 18.00 | $\mathrm{~N} / \mathrm{mm}^{2}$ | |

$\mathrm{ftt}=$	-2.70	N/mm2		
$\mathrm{fct}=$	18.00	N/mm2	z1>	$(\alpha \mathrm{Ms}-\beta \mathrm{Mi}) /(\alpha f \mathrm{cs}-\beta \mathrm{ftt}) \ldots \ldots(5)$
$\mathrm{fts}=$	-3.18	N/mm2	$z 2>=$	($\alpha \mathrm{Ms}-\beta \mathrm{Mi}) /(\beta f \mathrm{ct}-\alpha \mathrm{fts}) \ldots \ldots \ldots \ldots(6)$
fcs $=$	16.50	$\mathrm{N} / \mathrm{mm} 2$		
restressing Properties				
$\alpha=$	0.9		z1 >=	$7.50 \mathrm{E}+06$
$\beta=$	0.8		z2 >=	$6.11 \mathrm{E}+06$
$M_{i}=$	60.6	kNm	$\begin{aligned} & \text { Wsw }=0.202 \times 24=4.85 \mathrm{kN} / \mathrm{m} ; \mathrm{Mi}=4.85 \times 10 \times 10 / 8=60.6 \mathrm{kNm} \\ & \mathrm{Ws}=(1.5+3.0) \times 2.4+4.85=15.65 \mathrm{kN} / \mathrm{m} \\ & \mathrm{Ms}=15.65 \times 100 / 8=195.6 \mathrm{kNm} \end{aligned}$	
$\mathrm{M}_{\mathrm{s}}=$	195.6	kNm		

Solution

Section Adequacy

Try Section 300×2400
Sectional Properties

$\mathrm{A}=$	$2.20 \mathrm{E}+05$	mm2	$\mathrm{MM}_{\mathrm{s}}=$	183.41	kNm
$1=$	$1.67 \mathrm{E}+09$	mm4	$\beta \mathrm{M}_{\mathrm{i}}=$	55.03	kNm
$y_{1}=$	89	mm			
$y_{2}=$	211	mm	$\alpha \mathrm{cfs}_{\text {cs }}=$	14.85	$\mathrm{N} / \mathrm{mm}^{2}$
$Z_{1}=$	$1.876 \mathrm{E}+07$	mm3	$\alpha f_{\text {ts }}=$	-2.86	$\mathrm{N} / \mathrm{mm}^{2}$
$\mathrm{Z}_{2}=$	$7.915 \mathrm{E}+06$	mm3	$\beta f_{\text {tt }}=$	-2.16	$\mathrm{N} / \mathrm{mm}^{2}$
Limiting Stresses			$\beta f_{c t}=$	18.00	$\mathrm{N} / \mathrm{mm}^{2}$
$\mathrm{ftt}=$	-2.70	N/mm2			
$\mathrm{fct}=$	18.00	N/mm2	z $1>=$	$\alpha \mathrm{Ms}-\beta$	ii) / (α
$\mathrm{fts}=$	-3.18	N/mm2	$z 2>=$	$\alpha \mathrm{Ms}-\beta$	i) / (β
$\mathrm{fcs}=$	16.50	N/mm 2		-	
Prestressing Properties					
$\alpha=$	0.9		z1 >	.55E+06	
$\beta=$	0.8		z2 >=	.15E+06	ok
$M_{i}=$	68.793	kNm			
$M_{s}=$	203.793	kNm			
$\mathrm{e}=$	176				

Sectional Properties					
$\mathrm{A}=$	$2.20 \mathrm{E}+05$	$\mathrm{~mm}^{2}$			
$\mathrm{I}=$	$1.67 \mathrm{E}+09$	$\mathrm{~mm}^{4}$			
$\mathrm{y}_{1}=$	89	mm			
$\mathrm{y}_{2}=$	211	mm			
$\mathrm{Z}_{1}=$	$1.876 \mathrm{E}+07$	$\mathrm{~mm}^{3}$			
$\mathrm{Z}_{2}=$	$7.915 \mathrm{E}+06$	$\mathrm{~mm}^{3}$			
Prestressing Properties					
$=$					
$\beta=$	0.9				
$\mathrm{M}_{\mathrm{i}}=$	68.8				
$\mathrm{M}_{\mathrm{s}}=$	203.793	kNm			
cover $=$	35	kNm			
$\mathrm{e}_{\text {max }}=$	176	mm			
Limiting Stresses					
$\mathrm{ftt}=$				-2.70	$\mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{fct}=$	18.00	$\mathrm{~N} / \mathrm{mm}^{2}$			
$\mathrm{fts}=$	-3.18	$\mathrm{~N} / \mathrm{mm}^{2}$			
$\mathrm{fcs}=$	16.50	$\mathrm{~N} / \mathrm{mm}^{2}$			

$\mathrm{e}<=(\mathrm{Mi}-\mathrm{zl} f \mathrm{tt}) / \alpha \mathrm{Pi}+\mathrm{zl} / \mathrm{A}$
$\mathrm{e}<=(\mathrm{Mi}+\mathrm{z} 2 f \mathrm{ct}) / \boldsymbol{\alpha P i}-\mathrm{z} 2 / \mathrm{A}$
$\mathrm{e}>=(\mathrm{Ms}-\mathrm{zl} f \mathrm{cs}) / \beta \mathrm{Pi}+\mathrm{zl} / \mathrm{A}$
$\mathrm{e}>=(\mathrm{Ms}+\mathrm{z} 2 f \mathrm{ts}) / \beta \mathrm{Pi}-\mathrm{z} 2 / \mathrm{A}$.

$\mathrm{Pi}(\mathrm{kN})$	$1 / \mathrm{Pi}$	$1 / \mathrm{Pi} \times 10^{3}$	e	Ineq.
1000	0.001	1	218	(11)
1000	0.001	1	199	(12)
1000	0.001	1	-47	(13)
1000	0.001	1	187	(14)

$\mathrm{L}=$	10.000	m
$\mathrm{Gk}=$	3.600	kN / m
$\mathrm{Qk}=$	7.200	kN / m
$\mathrm{W}_{\mathrm{sw}}=$	5.503	kN / m
slab $\mathrm{L}=$	2.400	mm
$\mathrm{M}_{\mathrm{i}}=$	68.793	kNm
$\mathrm{M}_{\mathrm{s}}=$	203.793	kNm

Points on Graph

	x	\mathbf{y}
$\mathrm{pt12}$	1	199
$\mathrm{pt14}$	1	187
$\mathrm{pt11}$	1	218
$\mathrm{pt13}$	1	-47
emp	0	176
kb	0	85
kt	0	36

Solution - Manual Plotting

Solution - Using Graph v4.3

Solution - Using Inequalities

Minimum Prestressing Force

Sectional Properties		
$\mathrm{A}=$	$2.20 \mathrm{E}+05$	mm 2
I =	$1.67 \mathrm{E}+09$	mm 4
$\mathrm{y}_{1}=$	89	mm
$\mathrm{y}_{2}=$	211	mm
$\mathrm{Z}_{1}=$	$1.876 \mathrm{E}+07$	mm3
$\mathrm{Z}_{2}=$	$7.915 \mathrm{E}+06$	mm 3
Limiting Stresses		
$\mathrm{ft}=$	-2.70	N/mm2
$\mathrm{fct}=$	18.00	N/mm2
$\mathrm{fts}=$	-3.18	N/mm2
fcs $=$	16.50	N/mm2

Prestressing Properties

$\alpha=$	0.9	
$\beta=$	0.8	
$M_{1}=$	68.793	kNm
$M_{8}=$	203.793	kNm
$e=$	176	mm

$Z_{1} /$ A $=$	85.29	mm
$Z_{2} / \mathrm{A}=$	35.98	mm
$\mathrm{Z}_{1} \mathrm{ftt}=$	-5.07E+07	Nmm
$Z_{2} \mathrm{fct}=$	$1.42 \mathrm{E}+08$	Nmm
Z, fcs $=$	$3.10 \mathrm{E}+08$	Nmm
Z_{2} ts $=$	$-2.52 \mathrm{E}+07$	Nmm
$\mathrm{Z}_{1} \mathrm{ftt}-\mathrm{Mi}=$	-1.19E+08	Nmm
$\mathrm{Z}_{2} \mathrm{fct}+\mathrm{Mi}=$	$2.11 \mathrm{E}+08$	Nmm
$\mathrm{Z}_{1} \mathrm{fcs}-\mathrm{Ms}=$	$1.06 \mathrm{E}+08$	Nmm
$\mathrm{Z}_{2} \mathrm{fts}+\mathrm{Ms}=$	$1.79 \mathrm{E}+08$	Nmm
$\alpha\left(Z_{1} /\right.$ A -e$)=$	-81.64	mm
$\alpha\left(Z_{2} / A+e\right)=$	190.78	mm
$\beta\left(Z_{1} / A-e\right)=$	-72.57	mm
$\beta\left(Z_{2} / A+e\right)=$	169.58	mm

$$
\left.\begin{array}{rl}
\mathrm{Pi} & >=(\mathrm{z} 1 \mathrm{ftt}-\mathrm{Mi}) / \alpha(\mathrm{z} 1 / \mathrm{A}-\mathrm{e}) \\
\mathrm{Pi} & <(\mathrm{z} 2 \mathrm{fct}+\mathrm{Mi}) / \alpha(\mathrm{z} 2 / \mathrm{A}+\mathrm{e}) \\
\mathrm{Pi} & <=(\mathrm{z} 1 \mathrm{fcs}-\mathrm{Ms}) / \beta(\mathrm{z} 1 / \mathrm{A}-\mathrm{e}) \\
\mathrm{Pi} & >=(\mathrm{z} 2 \mathrm{fts}+\mathrm{Ms}) / \beta(\mathrm{z} / \mathrm{A}+\mathrm{e})
\end{array}\right] \begin{array}{lll}
\\
\mathrm{Pi} & <=1463.24 \mathrm{kN} & (7) \tag{7}\\
\mathrm{Pi} & <=1107.35 \mathrm{kN} & (8) \\
\mathrm{Pi} & >=-1458.15 \mathrm{kN} & (9) \\
\mathrm{Pi} & >=1053.33 \mathrm{kN} & (10)
\end{array}
$$

 工=> Ineq (9) change from \(<=\) to \(>=\)

Example 3-4

A post-tensioned precast concrete beam (shown in next slide), simply supported over a span of 29.4 m carries a total uniformly distributed service load of $35.8 \mathrm{kN} / \mathrm{m}$ in addition to its own self weight. The following information is given:

- Class 1 category; fci $=45 \mathrm{~N} / \mathrm{mm}^{2} ; \mathrm{fcu}=50 \mathrm{~N} / \mathrm{mm}^{2}$
$-A=723700 \mathrm{~mm}^{2} ; \mathrm{y} 2=876 \mathrm{~mm}$
$-\mathrm{I}=255.34 \times 10^{9} \mathrm{~mm}^{4}$; cover to tendon $=152 \mathrm{~mm}$
- Take unit weight of concrete, g as $25 \mathrm{kN} / \mathrm{m}^{3}$

Construct a Magnel diagram and find the minimum prestress force. Compare your results with those obtained using the inequalities.

Example 3-4

Solution

Sectional Properties		
$\mathrm{A}=$	$7.24 \mathrm{E}+05$	$\mathrm{~mm}^{2}$
$\mathrm{I}=$	$2.55 \mathrm{E}+11$	$\mathrm{~mm}^{4}$
$\mathrm{y}_{1}=$	774	$\mathrm{~mm}^{2}$
$\mathrm{y}_{2}=$	876	mm
$\mathrm{Z}_{1}=$	$3.299 \mathrm{E}+08$	$\mathrm{~mm}^{3}$
$\mathrm{Z}_{2}=$	$2.915 \mathrm{E}+08$	$\mathrm{~mm}^{3}$
Prestressing Properties		
$\alpha=$	0.9	
$\beta=$	0.8	
$\mathrm{M}_{1}=$	1954.804	kNm
$\mathrm{M}_{s}=$	5822.815	kNm
cover $=$	152	mm
$\mathrm{e}_{\mathrm{max}}=$	724	mm
Limiting Stresses		
$\mathrm{ftt}=$	-1.00	$\mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{fct}=$	22.50	$\mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{fts}=$	0.00	$\mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{fcs}=$	16.50	$\mathrm{~N} / \mathrm{mm}^{2}$

$\mathrm{L}=$	29.400	m
$\mathrm{Gk}=$	35.800	kN / m
$\mathrm{Qk}=$	0.000	kN / m
$\mathrm{W}_{\mathrm{s}}=$	18.093	kN / m
$\mathrm{Ws}=$	53.893	kN / m
$\mathrm{M}_{\mathrm{i}}=$	1954.80	kNm
$\mathrm{M}_{\mathrm{s}}=$	5822.82	kNm

Solution

Section Adequacy

Magnel Diagram

	2	$\mathrm{P}(\mathrm{kN})$	1/P	e_{11}	e_{12}	e_{13}	e_{14}	$\mathrm{e}_{\max }$	$1 / \mathrm{P} \times 10^{-6}$
$\left(z_{2} \mathrm{f}_{\text {ct }}+\mathrm{M}_{\mathrm{i}}\right) / \alpha=$	9,	infiniti	0	456	-403	456	-403	724	0
$\left(z_{2}{ }^{\text {ct }}+M_{i j} / \alpha=\right.$	9.46E+09	1000	0.000001	2994	9056	930	6876	724	1.00
$\left(\mathrm{M}_{s}-\mathrm{zil} \mathrm{f}_{\mathrm{cs}}\right) / \beta=$	$4.74 \mathrm{E}+08$	750	1.33E-06	3841	12209	1088	9302	724	1.33
$\left(\mathrm{M}_{\mathrm{s}}+22 \mathrm{f}_{\mathrm{t}}\right) / \beta=$	$7.28 \mathrm{E}+09$	500	0.000002	5533	18515	1405	14154	724	2.00
$\mathrm{k}_{6}=Z_{1} / \mathrm{A}=$	456	250	0.000004	10610	37434	2353	28711	724	4.00
$\mathrm{k}_{\mathrm{t}}=\mathrm{Z}_{2} / \mathrm{A}=$	403	100	0.00001	25841	94188	5200	72382	724	10.00

Solution - Using MS Excel

Solution - Using Inequalities

Solution Using Graph V4.3

