OPENCOURSEWARE

SEE1223: Digital Electronics 7 – Semiconductor Memory

Zulkifil Md Yusof

Dept. of Microelectronics and Computer Engineering The Faculty of Electrical Engineering Universiti Teknologi Malaysia

innovative • entrepreneurial • global

ocw.utm.my

Semiconductor Memory

- Introduction to Semiconductor Memories
- Read Only Memory (ROM)
 - Mask ROM, PROM, EEPROM
 - ROM programming
- Random Access Memory (RAM)
 - SRAM and DRAM
- Flash Memory
- Memory Expansion
 - Capacity and data length expansion
- Memory IC's

Introduction to Memories

 Semiconductor memories are made from silicon, unlike hard-disk drive memory which are magnetics and optics

Introduction to Memories

- Main difference between memory technologies:
 - -RAM
 - Data can be read and written but data stored is *volatile*, i.e. need power to retain data
 - ROM
 - Data can only be read, and the data stored is not volatile, i.e. don't need power to retain data
 - Flash
 - Data can be read and written, and data stored is not volatile, i.e. don't need power to retain data

Read Only Memory (ROM)

- ROM is used to store data that never (or rarely) changed
- Data in ROMs are retained even when power is not supplied – main advantage of ROM
- Data in ROMs are typically pre-configured using specialized equipments
- There are three commonly used ROMs: Mask ROM, PROM, and EEPROM

- Mask ROM
 - Data is permanently stored in the memory during the manufacturing process
 - Once the memory array is programmed, it cannot be changed
 - Uses MOS transistor for memory cells
- Programmable ROM (PROM)
 - Uses some type of fusing process to store bits
 - The fusion process is irreversible, one programmed, it cannot be changed
 - Uses MOS transistor with fusible links for memory cells

- Electrically Erasable Programmable ROM (EEPROM)
 - Unlike PROM, EEPROM can be reprogrammed if an existing program in the memory array is erased
 - EEPROM is erased and programmed using electrical pulses
 - Therefore, EEPROM can be rapidly programmed and erased in-circuit for reprogramming
 - Uses either floating gate MOS or MNOS transistors for memory cells

ROM Size

- Size of semiconductor memories is represented in bits
- For example, an 8x4 ROM is capable of storing 32 bits
- 8x4 ROM has 3 address lines (2³ = 8) and 4 data lines
- For a 32x8 ROM, how many address line and data lines?

```
– Address Line = 5, data line = 8
```


ROM Programming

ROM basic construction

ROM Programming (cont.)

Design a ROM based on the following truth table

Input Address		Output Data			
A[1]	A[0]	Data[3]	Data[2]	Data[1]	Data[0]
0	0	0	1	1	0
0	1	0	1	1	1
1	0	1	0	1	0
1	1	0	1	0	0

What kind of decoder do we need? => 2x4 decoder What is the size of the ROM? => 4x4 ROM ocw.utm.mv

ROM Programming (cont.)

4x4 ROM configured according to the previous truth table

ROM Programming (cont.) ROM IC has Chip Select (CS) and Output

- Enable (OE) pins
 - Output data is valid only when CS = 0 and OE = 0, else data
 z (high impedance, i.e. not '0' and not '1')

Assume Data[7:0] = 0011 0101 at location A[1:0] = 10

To read the data at location 10, Set $A_1A_0 = 10$ Set CS = 0, OE = 0output Data[7:0] = 0011 0101

If CS = 1 or OE = 1, data [7:0] = zzzz zzzz, Regardless of the address input A_1A_0

Random Access Memory (RAM)

- RAM is a temporary data storage
- RAM does not retain its stored data when no power is applied
- When a data unit is written into a given address in the RAM, the data unit previously stored at that address is replaced by the new unit
- When a data unit is read at a given address, the data unit that is read remains there
- There are two types of RAM
 - Static RAM (SRAM)
 - Dynamic RAM (DRAM)

The difference is on how each cell is designed

- SRAM vs DRAM
 - SRAM uses a latch to store 1 bit in cell while
 DRAM uses a capacitor to store 1 bit in a cell
 - Therefore, SRAM is more expensive to implement,
 i.e. requires more logic gates per cell compared to
 DRAM
 - Because SRAM uses a latch, it works faster than DRAM that requires the capacitor to be periodically refreshed
 - SRAM is typically implemented in high speed CPU cache memory, while DRAM is implemented in main memory

- How to read from and write to a RAM?
 - Provide the address and data we want to read or write
 - We also need a few enable signals to control when we want to enable the memory, read, and write operation
 - The Chip Select signal (CS) is used to enable the memory
 - The Write Enable signal (WE) is used to enable the write operation
 - The Output Enable signal (OE) is used to enable the read operation

 Read operation example: Read one byte at location A[1:0] = 10 from a 4x8 RAM

Step 1: Supply address A[1:0] = 10 to Read location 10

Step 2: Set CS = 0 to enable the memory

Step 3: Set OE = 0 to enable read

Step 4: Set WE = 1 to disable write

Step 5: Get the data at location 10

 Write operation example: Write one byte at location A[1:0] = 10 from a 4x8 RAM

Flash Memory

- Flash memory is the closest to the ideal memory:
 - capable of high storage capacity
 - retains data when power off
 - ability to erase and reprogram at will
 - fast operation
 - Cheap
- Flash memory cell is designed using stacked gate MOS transistor (floating gate transistor)

Memory Expansion

- Memory can be expanded on its capacity or data length
 - Capacity expansion example: 16x4 memory expands to 32x4 memory
 - Data length expansion example: 16x4 memory expands to 16x8 memory

Memory Expansion (cont.)

 Capacity expansion – Use two 16x4 RAM to produce a 32x4 RAM

Memory Expansion (cont.)

 Data length expansion – Use two 16x4 RAM to produce a 16x8 RAM

Memory IC

 2864 device: 8Kx8 EEPROM – How many address lines and data lines?

- 13-bit address line, 8-bit data line EEPROM

- 6264 device: 8Kx8 SRAM How many address lines and data lines?
 - 13-bit address line, 8-bit data line SRAM