SEE1223: Digital Electronics 6 - Counters and Registers

Zulkifil Md Yusof
Dept. of Microelectronics and Computer Engineering
The Faculty of Electrical Engineering
Universiti Teknologi Malaysia

Counter and Registers

- Counters
- Asynchronous Counters
- Synchronous Counters
- Design of Synchronous Counters
- 74163 devices
- Registers
- Shift Registers
- SISO, SIPO, PISO, PIPO
- Shift Register Counters
- Johnson and Ring
- 74164, 74165, 74194, and 74195 devices

Introduction to Counters

- Counters - Circuit that performs the operation of counting at every clock edge

Introduction to Counters (cont.)

- Draw the output waveforms $\mathrm{Q}_{2}, \mathrm{Q}_{1}$ and Q_{0} for a negative edge triggered 3-bit counter with active low clear

Q_{2}
Q_{1}
Q_{0}

Introduction to Counters (cont.)

- Counter are designed using flip-flops, typically the negative edge triggered
- Counters can be designed as asynchronous or synchronous
- Asynchronous counters - The clock is applied on the first stage. Subsequent stages derive the clock from the previous stage
- Synchronous counters - The clock is applied to all stages using a common clock signal
- Synchronous counters perform better than asynchronous counters, therefore, are widely used in digital systems

Asynchronous Counters

- 3-bit asynchronous counter using T Flip-flops
 Subsequent stages takes the Q from the previous stage for clk

Can you draw the waveform for Q_{2}, Q_{1} and Q_{0} for 8 clock cycles?
Can you identify the problem with asynchronous counters?

Synchronous Counters

- 3-bit Synchronous Counter using T Flip-flops

In synchronous counters, a common clk signal is used to clock all flip-flops
Can you draw the waveform for Q_{2}, Q_{1} and Q_{0} for 8 clock cycles?
2/18/202Why is the synchronous counter superior to asynchronous counters?

Design of Synchronous Counters

- How to design the 3-bit synchronous counter?
- There is a systematic procedure of designing synchronous counters
- Step 1: Derive the state transition diagram
- Step 2: Derive the next state and state transition table
- Step 3: Using K-Maps, derive the logic expressions
- Step 4: Implement the circuit

Design of Synchronous Counters

- The design of negative edge triggered 3-bit synchronous counter using T Flip-flops
- Step 1: Derive the state diagram

State 001 goes to state 010 at negative edge of clk

State 110 goes to state 111
 at negative edge of clk

Design of Synchronous Counters

- Step 2: Derive the next state and state transition table

3 -bit counter, we need 3 flip-flops
Using T flip-flops

Present State			Next State			Output Transition			Flipfflop Inputs			
	Q_{2}		Q_{2}	Q	Q_{0}	Q_{2}	Q_{1}	Q_{0}				
0	0	0	0	0	1	$0 \rightarrow 0$	$0 \rightarrow 0$	$0 \rightarrow 1$	0	0	1	
0	0	1	0	1	0	$0 \rightarrow 0$	$0 \rightarrow 1$	$1 \rightarrow 0$	0	1	1	
0	1	0	0	1	1	$0 \rightarrow 0$	$1 \rightarrow 1$	$0 \rightarrow 1$	0	0	1	
0	1	1	1	0	0	$0 \rightarrow 1$	$1 \rightarrow 0$	$1 \rightarrow 0$	1	1	1	
1	0	0	1	0	1	$1 \rightarrow 1$	$0 \rightarrow 0$	$0 \rightarrow 1$	0	0	1	
1	0	1	1	1	0	$1 \rightarrow 1$	$0 \rightarrow 1$	$1 \rightarrow 0$	0	1	1	
1	1	0	1	1	1	$1 \rightarrow 1$	$1 \rightarrow 1$	$0 \rightarrow 1$	0	0	1	
1	1	1	0	0	0	$1 \rightarrow 0$	$1 \rightarrow 0$	$1 \rightarrow 0$	1	1	1	

Design of Synchronous Counters

- Step 3: Using K-Maps, derive the logic expressions

Design of Synchronous Counters

- Step 4: Implement the circuit

$$
T_{0}=1 \quad T_{1}=Q_{0} \quad T_{2}=Q_{1} \cdot Q_{0}
$$

Which is the same circuit as before

Design of Synchronous Counters

- Implement the following counter using D Flipflops and basic gates

The counter counts with the Sequence of 3-9-5-1

How many D Flip-flops do we need? => 4

Next step: Derive the next state and state transition table

Design of Synchronous Counters

- Next state and state transition table

Present State	Next State	Output Transition	Flip-flop Inputs
$Q_{3} \quad Q_{2} \quad Q_{1} \quad Q_{0}$	$Q_{3} Q_{2} Q_{1} Q_{0}$	$\mathrm{Q}_{3} \quad \mathrm{Q}_{2} \quad \mathrm{Q}_{1} \quad \mathrm{Q}_{0}$	$\begin{array}{lllll}D_{3} & D_{2} & D_{1} & D_{0}\end{array}$
$\begin{array}{llll}0 & 0 & 0 & 0\end{array}$	$\begin{array}{llll}0 & 0 & 1 & 1\end{array}$	0-0 $00-0$	$\begin{array}{llll}0 & 0 & 1 & 1\end{array}$
$\begin{array}{llll}0 & 0 & 0 & 1\end{array}$	$\begin{array}{llll}0 & 0 & 1 & 1\end{array}$	0-0 $00-0$	$\begin{array}{llll}0 & 0 & 1 & 1\end{array}$
$\begin{array}{llll}0 & 0 & 1 & 1\end{array}$	100001	0-1 0 0-0 1 1-0 $1-1$	100001
$\begin{array}{llll}0 & 1 & 0 & 1\end{array}$	0	0-0 $\quad 1-0 \quad 0-0 \quad 1-1$	$\begin{array}{llll}0 & 0 & 0 & 1\end{array}$
1000	$\begin{array}{llll}0 & 1 & 0 & 1\end{array}$	1-0 $00-1$ 0-0 $1-1$	$\begin{array}{llll}0 & 1 & 0 & 1\end{array}$

Taking the present state as inputs, use K-Maps to find D_{3}, D_{2}, D_{1}, and D_{0} Use don't care conditions when necessary

Design of Synchronous Counters

K-Map for D_{2} $D_{2}=Q_{3}$

K-Map for D_{0} $D_{0}=1$

Design of Synchronous Counters

- Final step: Circuit implementation

Counter IC (cont.)

- The 74163 device: 4-bit Synchronous counter - Counts from 0 to 15

Refer to datasheet for details

