
Introduction to C++ Introduction to C++
(Environment and data type)(Environment and data type)

Introduction to C++ Introduction to C++
(Environment and data type)(Environment and data type)

SPM SPM 21022102

PROGRAMMING LANGUAGE PROGRAMMING LANGUAGE 1 1

SPM SPM 21022102

PROGRAMMING LANGUAGE PROGRAMMING LANGUAGE 1 1

(Environment and data type)(Environment and data type)
Part Part 11

(Environment and data type)(Environment and data type)
Part Part 11

ByBy

NORAH MD NORAH MD NOOR & NOOR &

MEGAT AMAN ZAHIRI MEGAT ZAKARIAMEGAT AMAN ZAHIRI MEGAT ZAKARIA

At the end of this lecture, you should learn:

• Environment of C++ programming

• Structure of C++ programming

• C++ data types • C++ data types

• Elements of C++

• C++ was created on 1979 by Bjarne Stroustrup at the Bell

Laboratories, New Jersey – 10 years after the ‘birth’ of C

language

• C++ contains all of C elements with some additional features –

with the purpose of eliminating the flaws that exists in C

• C emphasize on structured programming while C++ is rather

more object oriented programming.

• A more massive and complex application could be

achieved with this object oriented method of

programming (C++).

• The standard version of C had been released on the year

1989 - ANSI C (American National Standard Institute)

• C and C++ programs were produced in text files (.txt) using text

editing applications - e.g: Notepad, vi, emacs, pico etc

• Programs that were produced in this form are known as source

code

• Source codes that have been compiled will produce object codes • Source codes that have been compiled will produce object codes

and later will converted into .exe by a linker

• Object code is a machine code that is not complete

Edit

Source Code
C++

.cpp

.c

.cc

.C

.cxx

compiler

Standard library
I/O
Comm
library

linker

Object
code

.obj

.o

executable The process
occurs

transparently

source code
#include <iostream.h>
#include <conio.h>
void main ()
{
char nombor[] = {'a','b','c','d',} ;
cout<<nombor[2] ;
getch();

*.cpp file

cout<<nombor[2] ;
getch();
}

*.cpp file

*.exe file

*.obj file

Environment of C++Environment of C++

• There are several important terms that has certain functions in
the C++ language environment, among them are:

– Text editor

– Compiler– Compiler

– Debugger

– Linker

– Make

Integrated Development Environment (IDE)

• Text editor

– Allows writing and editing activities of C++ programming codes

– Notepad (simple editor), emacs (UNIX), pico

• Compiler

– Converting the source code to object code that is

understandable by the CPUunderstandable by the CPU

– DOS/Windows

• Borland C/C++

• Microsoft Visual C/C++

– UNIX - GNU C/C++ compiler

• Linker

– Converting the object code into .exe files.

– Merging all the necessary parts (e.g: library files) by the

program to produce the final codes in the form of .exe to be

executed/run

• Debugger

– An application used to analyze the program

– Identifies errors and mistakes in the program

• Make

– A utility program that is used in C/C++ project development

• Integrated Development Environment (IDE)

– Integrates editing activity, compiling, debugging and testing in

a single environmenta single environment

– Simplifying programming project management like Turbo C++ /

Borland C++

Text Editor In
Borland C++

Compiler in C++Compiler in C++

Debugger in C++

exe file - Borland C++exe file - Borland C++

An IDE of Turbo C++An IDE of Turbo C++

• A C++ program will have the basic structure as follows:

– Comments - //

– Preprocessor directives - #include <conio.h>

– Main function / void main ()

– Variable declaration / int no1, no2;

– C++ statement / cout<<no1;

– Return statement / return no1;

• Comments

– Writable in any part of the program

– It will not result in any action by the computer (compilers do
not process comments)

– Used to make the program easier to be read and understand.
Also used to explain any part of the program as well as
documentation. documentation.

– Written in between /* and */ or after // as you can observe
below:

– /*…*/ mark

– ex: /* My first programming */

– // mark

– ex: // My first programming

• Preprocessor directives

– Starts with #

– Used to include header file/s

– The form of preprocessor directives is:

• #include<header file>

– The #include<iostream.h> directive is a direction to include the

header file for stream input-output that contains the definition

for cout and cin

iostrem – Input Output Stream

Cin>> Cout<<

• Main () function

– A block code that runs a task

– Every C++ program must have one main() function

– Consists of head and body

• The head contains preprocessor definitions and
instructions

Also contains the basic preparations for the related • Also contains the basic preparations for the related
functions

• The body part contains programming codes for the main()
function

• Decides what actually the function does here

• The form of a main() function for a C++ program is as follows:

– Main() function type

{ C++ statement…; }

Ex:

#include <iostream.h>

#include <conio.h>#include <conio.h>

void main ()

{

cout<<" arahan "; //paparkan arahan

getch();

}

Return statementReturn statement

– Written at the end of a program where it will divert the control
from the program to the OS

– Return 0, means that the program could be executed without
error

– Functions that uses void, there will be no value returned to the – Functions that uses void, there will be no value returned to the
OS

– Eg :

#include <iostream.h>

main ()

{

cout<<" Hai ";

return(0);

}

Example

// Aturcara untuk mengira min dari dua sampel data

#include<iostream.h>

Int main(){
int nombor1, nombor2;
float min;

Comment

Preprocessor directives

Main function

Variable declarationfloat min;

cout<<“\n Masukkan nombor pertama: “;
cin>>nombor1;
cout<<“\n Masukkan nombor kedua: “;
cin>>nombor2;
min=(nombor1+nombor2)/2;
cout<<“\n Nilai min adalah: “<<min;
return 0;

}

Variable declaration

C++ statement

Return statement

C++ C++ Statements Statements

– Instructs the computer to take action

– There are two types of C++ statement

• Phrase Statement

– Represents data such as numbers or characters or even

an entity like combination of variablesan entity like combination of variables

– Ex:

Pay_sum = total_hours * pay_rate

• Control Statement

– Consists of linear, selection and looping statements

C++ statement endingC++ statement ending

o Every C++ statement must be ended with a semicolon (;)

o The semicolon acts as an ending

o Without the semicolon, the compiler will inform that there is an

error in the program/compiling processerror in the program/compiling process

o eg : cout<<“Hello”

o A preprocessor directive does not need an ending (;)

eg : #include <iostream.h>

C++ statement endingC++ statement ending

#include <iostream.h>

#include <conio.h>

void main ()

{{

cout<<" arahan “ ;

cout<<" arahan 2“ ;

cout<<" arahan 3“ ;

getch();

}

Semicolon

Variable And Constant In C++ Variable And Constant In C++

Programming LanguageProgramming LanguageProgramming LanguageProgramming Language

VariableVariable

� Define & declare by user (eg : int numb, char name[2])

� Uniquely on the scope

� Never start with number

� Used underscore (_) for spacing

� never use space between char� never use space between char

� Never use special symbol (eg : %$|&^><:}*/^%)

� Case sensitive

VariableVariable

� int no1, no2 ;

� char name_1[5];
� int x,X,x2;
� cin>>x;
� cin>>X;� cin>>X;
� x2=x+X;
� cout<<x2;

ConstantsConstants

� Constants are expressions with a fixed value.

• You can define your constants that you use very often by using the

#define preprocessor directive. Its format is:

#define identifier value

For example: For example:

#define PI 3.14159

• #define NEWLINE '\n'

This defines two new constants: PI and NEWLINE. Once they are

defined, you can use them in the rest of the code

