SEE1223: Digital Electronics 3 - Combinational Logic Design

Zulkifil Md Yusof

Dept. of Microelectronics and Computer Engineering
The Faculty of Electrical Engineering
Universiti Teknologi Malaysia

Karnaugh Maps (K-Map)

- K-Map structure
- 2,3, and 4-variable Karnaugh Maps
- K-Map Grouping and Logic Simplification
- K-Map SOP and POS terms
- K-Map Don't Care Conditions
- Logic Design using K-Maps

Introduction

- Karnaugh Map (K-Map) is a tool for simplifying digital logic with 2-6 variables
- K-Map, if properly used will produce the simplest SOP and POS expression possible, known as the minimum expression
- K-Map simplifies logic through SOP and POS boolean expressions, and truth table
- In this class, we'll look at logic simplification of 2,3 , and 4 variables

2-variable K-Maps

K-Map is a representation of a truth table, but can be used to obtain Boolean expressions
$F(A, B)$ truth table

$A B$	F	
00	x	
01	x	
10	x	$2-v a r i a b l e ~ K-M a p ~$
11	x	

3-variable K-Map

F(A,B,C) truth table

$A B C$	F
000	x
001	x
010	x
011	x
100	x
101	x
1110	x
111	x

3-variable K-Map
Gray code ordering

$\triangle B C$				
0	x	X	x	X
1	X	X	X	x

4-variable K-Map

F(A,B,C,D) truth table
4-variable K-Map

A	B	C	D	F
0	0	0	0	x
0	0	0	1	x
0	0	1	0	x
0	0	1	1	x
0	1	0	0	x
0	1	0	1	x
0	1	1	0	x
0	1	1	1	x

A	B	C	D	F
1	0	0	0	x
1	0	0	1	x
1	0	1	0	x
1	0	1	1	x
1	1	0	0	x
1	1	0	1	x
1	1	1	0	x
1	1	1	1	x

K-Map Example

- Given the following standard form of SOP, complete the truth table and K-map

$$
F=\bar{A} \bar{B} C+\bar{A} B \bar{C}+A B \bar{C}+A B C
$$

K-Map Example

- Given the following SOP expression, complete the K-Map

$$
F=\bar{B} \bar{C}+A \bar{B}+A B \bar{C}+A \bar{B} C \bar{D}+\bar{A} \bar{B} \bar{C} D+A \bar{B} C D
$$

$F=1$
when $\mathrm{B}=0$ and $\mathrm{C}=0$ ($1^{\text {st }}$ minterm)
when $A=1$ and $B=0$ ($2^{\text {nd }}$ minterm)
when $A=1, B=1$, and $C=0$ ($3^{\text {rd }}$ minterm)
when $\mathrm{A}=1, \mathrm{~B}=0, \mathrm{C}=1$, and $\mathrm{D}=0$ (4th minterm)
when $A=0, B=0, C=0$, and $D=1\left(5^{\text {th }}\right.$ minterm $)$
when $A=1, B=0, C=1$, and $D=1\left(6^{\text {th }}\right.$ minterm $)$

	00	01	11	10
00	1	1	0	0
01	0	0	0	0
11	1	1	0	0
10	1	1	1	1

K-Map Grouping

- After SOP expression has been mapped, minimum expression is obtained by grouping the 1 's and determining the minimum SOP expression from the map
- When grouping the 1 's, the goal is to maximize the size of the groups, and minimize the number of groups

K-Map Grouping (cont.)

- Rules for grouping of 1's
- A group must contain either 1, 2, 4, 8, or 16 cells. For x-variable K-map, 2^{x} cells is maximum
- Each cell in a group must be adjacent to one or more cells in that same group, but all cells in the group don't have to be adjacent to each other
- Always include the largest possible number of 1's in a group
- Each 1 on the map must be included in at least one group. The 1's already in a group can be included in another group as long as the overlapping groups include common 1 's

K-Map Minimum Product Term

- For 3-variable K-Map
- 1 cell group yields a 3-variable product term
- 2 cell group yields a 2 -variable product term
- 4 cell group yields a 1-variable product term
-8 cell group yields a value of 1 for the expression
- For 4-variable K-Map
- 1 cell group yields a 4-variable product term
- 2 cell group yields a 3 -variable product term
- 4 cell group yields a 2 -variable product term
- 8 cell group yields a 1-variable product term
- 16 - cell group yields a value of 1 for the expression

K-Map Simplification

- Group the 1's and find the minimum SOP expression in the $K-M a p$ below

Expression is minimized when taking large cell possible

$$
\begin{gathered}
A B \\
F=A B+\bar{A} \bar{B} C+B \bar{C}
\end{gathered}
$$

What is the SOP expression if each cell is taken as a group?

$$
F=\bar{A} \bar{B} C+\bar{A} B \bar{C}+A B \bar{C}+A B C
$$

K-Map Simplification

- Find the minimum SOP expression for the logic expression: $F(A, B, C)=\prod(3,5)$

K-Map Simplification

- Group the 1's and find the minimum SOP expression

K-Map Simplification

- Find the minimum expression for the logic expression: $F(A, B, C, D)=\sum(0,2,4,5,6,8,10,11,12,13,14)$

$$
F=\bar{D}+B \bar{C}+A \bar{B} C
$$

Don't Care Conditions

- Don't Care is the condition when the output can either be ' 1 ' or ' 0 ,' which is denoted by ' x ' in the truth table or K-Map
- For both SOP and POS minimum expression, ' x ' can be included or ignored

Don't Care Condition (cont.)

- Find minimum SOP expression for the following K-Map

$A B$
If the ' x ' is replaced by ' 0 ,' find the minimum SOP expression

$$
F=\bar{A} D+A B \bar{C}+A B \bar{D}
$$

