

Logic Gates and Boolean Algebra

- Logic Gates
 - Inverter, OR, AND, Buffer, NOR, NAND, XOR, XNOR
- Boolean Theorem
 - Commutative, Associative, Distributive Laws
 - Basic Rules
- DeMorgan's Theorem
- Universal Gates
 - NAND and NOR
- Canonical/Standard Forms of Logic
 - Sum of Product (SOP)
 - Product of Sum (POS)
 - Minterm and Maxterm

SOP and POS

- All boolean expressions can be converted to two standard forms:
 - SOP: Sum of Product
 - POS: Product of Sum
- Standardization of boolean expression makes evaluation, simplification, and implementation of boolean expressions more systematic and easier

Sum of Product (SOP)

 Boolean expressions are expressed as the sum of product, example: minterm

 $ABC + CDE + \overline{BCD}$ literal

- Each variable or their complements is called *literals*
- Each product term is called *minterm*

 In SOP, a single overbar cannot extend over more than one variable, example:

AB + ABC — Not SOP because BC

 Standard SOP forms must contain all of the variables in the domain of the expression for each product term, example:

$\overline{ABC} + \overline{ABC} + ABC$

• In the following SOP form,

$A\overline{B}C + \overline{A}\overline{B} + AB\overline{C}D$

- How many minterms are there? => 3
- How many literals in the second product term? => 2
- Is it in a standard SOP form? => No
- How do we convert the boolean expression to standard SOP form?

- To convert SOP to its standard form, we use the boolean rules
 - $-A + \overline{A} = 1$

-A(B+C) = AB + AC

• We have

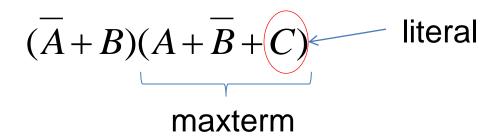
ABC + AB + ABCD

The first product term is missing the variable
D, and the second product term is missing C
and D

ABC + AB + ABCDApply D + D = 1 and C + C = 1=ABC(D+D)+AB(C+C)(D+D)+ABCDApply the distributive law = ABCD + ABCD + (ABC + ABC)(D + D) + ABCD= ABCD + ABCD $ABCD + ABCD \leftarrow$ — Standard SOP form

Product of Sum (POS)

Boolean expressions are expressed as the product of sum, example:





 In POS, a single overbar cannot extend over more than one variable, example:

 Standard POS forms must contain all of the variables in the domain of the expression for each sum term, example:

$$(A+B+C)(A+B+\overline{C})(A+\overline{B}+C)$$

• In the following POS form,

$$(A + \overline{B} + C)(\overline{B} + C + \overline{D})(A + \overline{B} + \overline{C} + D)$$

- Is it in a standard POS form? => No
- How do we convert the boolean expression to standard POS form?

- To convert POS to its standard form, we use the boolean rules
 - $-A.\overline{A}=0$
 - -A + BC = (A + B)(A + C)
- We have

 $(A+\overline{B}+C)(\overline{B}+C+\overline{D})(A+\overline{B}+\overline{C}+D)$

• The first sum term is missing the variable D, and the second sum term is missing A

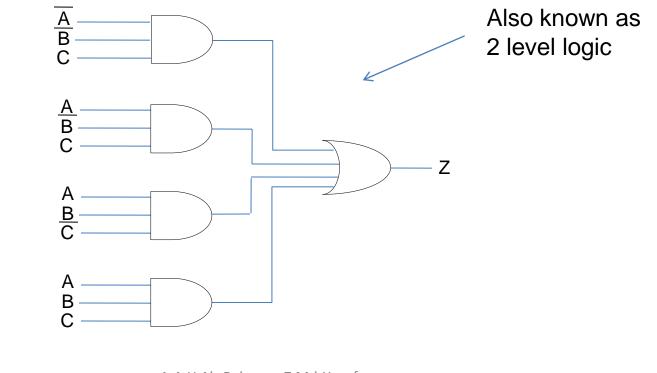
(A+B+C)(B+C+D)(A+B+C+D)Apply D.D = 0 and A.A = 0 to first and second terms (A + B + C + D.D)(A.A + B + C + D)(A + B + C + D)Expand first and second terms (A + B + C + D)(A + B + C + D)(A + B + C + D)(A + B + C + D) $(A+B+C+D) \leq$ Standard POS form

- Minterm: Product terms in SOP
- Maxterm: Sum terms in POS
- Standard forms of SOP and POS can be derived from truth tables

А	В	С	Z		For SOP form,
0	0	0	0	A + B + C	$Z = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$
0	0	1	1	\overline{ABC}	$=\sum m(1,5,6,7)$
0	1	0	0	$A + \overline{B} + C$	
0	1	1	0	$A + \overline{B} + \overline{C}$	For POS form,
1	0	0	0	$\overline{A} + B + C$	$Z = (A + B + C)(A + \overline{B} + C)$
1	0	1	1	\overline{ABC}	$(A+\overline{B}+\overline{C})(\overline{A}+B+C)$
1	1	0	1	$AB\overline{C}$	$= \prod M(0,2,3,4)$
1	1	1	1	ABC	••

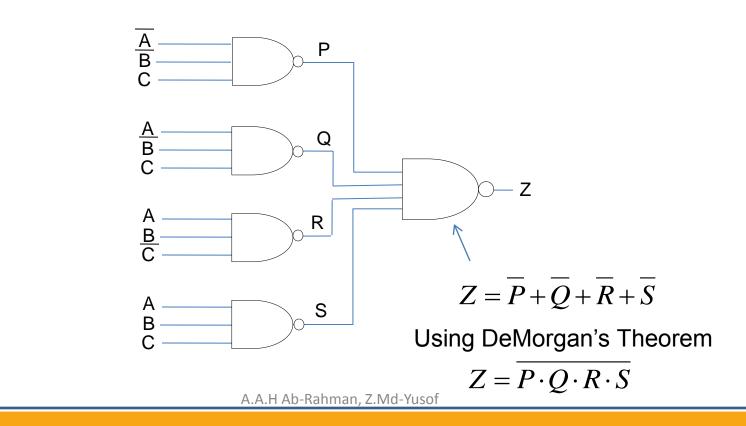
• How to design minterms – AND-OR logic

 $Z = \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC}$



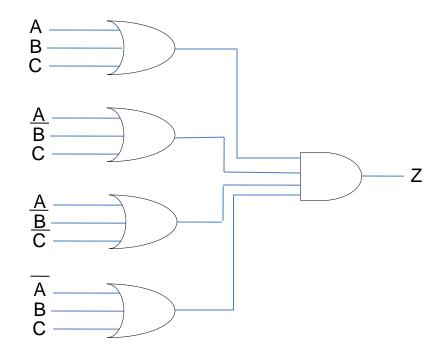
• How to design minterms – NAND-NAND Logic

 $Z = \overline{ABC} + \overline{ABC} + AB\overline{C} + AB\overline{C}$



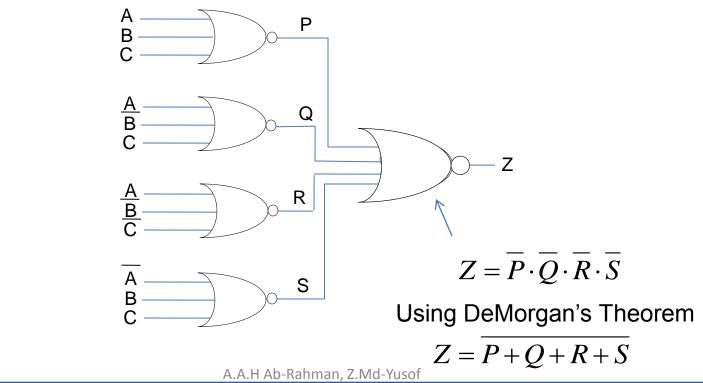
• How to design maxterms – OR-AND Logic

 $Z = (A + B + C)(A + \overline{B} + C)(A + \overline{B} + \overline{C})(\overline{A} + B + C)$



How to design maxterms – NOR-NOR Logic

Z = (A + B + C)(A + B + C)(A + B + C)(A + B + C)



2/18/2012

- Can the minterm and maxterm logic be optimized?
 - Yes, using Boolean algebra explore yourself
 - Yes, using Karnaugh maps next lecture

