## Logic Gates and Boolean Algebra

- Logic Gates
- Inverter, OR, AND, Buffer, NOR, NAND, XOR, XNOR
- Boolean Theorem
- Commutative, Associative, Distributive Laws
- Basic Rules
- DeMorgan's Theorem
- Universal Gates
- NAND and NOR
- Canonical/Standard Forms of Logic
- Sum of Product (SOP)
- Product of Sum (POS)
- Minterm and Maxterm


## SOP and POS

- All boolean expressions can be converted to two standard forms:
- SOP: Sum of Product
- POS: Product of Sum
- Standardization of boolean expression makes evaluation, simplification, and implementation of boolean expressions more systematic and easier


## Sum of Product (SOP)

- Boolean expressions are expressed as the sum of product, example: minterm

$$
A B C+C D E+\bar{B} C \bar{D}
$$

- Each variable or their complements is called literals
- Each product term is called minterm


## SOP (cont.)

- In SOP, a single overbar cannot extend over more than one variable, example:

$$
A B+A \overline{B C} \longleftarrow \text { Not SOP because } \overline{\mathrm{BC}}
$$

- Standard SOP forms must contain all of the variables in the domain of the expression for each product term, example:

$$
\bar{A} \bar{B} \bar{C}+A \bar{B} C+A B C
$$

## SOP (cont.)

- In the following SOP form,

$$
A \bar{B} C+\bar{A} \bar{B}+A B \bar{C} D
$$

- How many minterms are there? => 3
- How many literals in the second product term? => 2
- Is it in a standard SOP form? => No
- How do we convert the boolean expression to standard SOP form?


## SOP (cont.)

- To convert SOP to its standard form, we use the boolean rules
$-A+A=1$

$$
-A(B+C)=A B+A C
$$

- We have

$$
A \bar{B} C+\bar{A} \bar{B}+A B \bar{C} D
$$

- The first product term is missing the variable $D$, and the second product term is missing $C$ and D


## SOP (cont.)

$$
A \bar{B} C+\bar{A} \bar{B}+A B \bar{C} D
$$

Apply $\mathrm{D}+\overline{\mathrm{D}}=1$ and $\mathrm{C}+\overline{\mathrm{C}}=1$

$$
=A \bar{B} C(D+\bar{D})+\bar{A} \bar{B}(C+\bar{C})(D+\bar{D})+A B \bar{C} D
$$

Apply the distributive law

$$
\begin{aligned}
& =A \bar{B} C D+A \bar{B} C \bar{D}+(\bar{A} \bar{B} C+\bar{A} \bar{B} \bar{C})(D+\bar{D})+A B \bar{C} D \\
& =A \bar{B} C D+A \bar{B} C \bar{D}+\bar{A} \bar{B} C D+\bar{A} \bar{B} \bar{C} D+\bar{A} \bar{B} C \bar{D}+ \\
& \bar{A} \bar{B} \bar{C} \bar{D}+A B \bar{C} D \longleftarrow \text { Standard SOP form }
\end{aligned}
$$

## Product of Sum (POS)

- Boolean expressions are expressed as the product of sum, example:

$$
(\bar{A}+B) \underbrace{(A+\bar{B}+C)}_{\text {maxterm }} \text { literal }
$$

## POS (cont.)

- In POS, a single overbar cannot extend over more than one variable, example:

$$
(\bar{A}+B)(A+\overline{B+C}) \longleftarrow \text { Not SOP because } \overline{\mathrm{B}+\mathrm{C}}
$$

- Standard POS forms must contain all of the variables in the domain of the expression for each sum term, example:

$$
(A+B+C)(A+B+\bar{C})(A+\bar{B}+C)
$$

## POS (cont.)

- In the following POS form,

$$
(A+\bar{B}+C)(\bar{B}+C+\bar{D})(A+\bar{B}+\bar{C}+D)
$$

- Is it in a standard POS form? => No
- How do we convert the boolean expression to standard POS form?


## POS (cont.)

- To convert POS to its standard form, we use the boolean rules

$$
\begin{aligned}
& -A \cdot \bar{A}=0 \\
& -A+B C=(A+B)(A+C)
\end{aligned}
$$

- We have

$$
(A+\bar{B}+C)(\bar{B}+C+\bar{D})(A+\bar{B}+\bar{C}+D)
$$

- The first sum term is missing the variable $D$, and the second sum term is missing $A$


## POS (cont.)

$$
(A+\bar{B}+C)(\bar{B}+C+\bar{D})(A+\bar{B}+\bar{C}+D)
$$

Apply D. $\bar{D}=0$ and $A \cdot \bar{A}=0$ to first and second terms

$$
(A+\bar{B}+C+D \cdot \bar{D})(A \cdot \bar{A}+\bar{B}+C+\bar{D})(A+\bar{B}+\bar{C}+D)
$$

Expand first and second terms

$$
\begin{aligned}
& (A+\bar{B}+C+D)(A+\bar{B}+C+\bar{D})(A+\bar{B}+C+\bar{D})(\bar{A}+\bar{B}+C+\bar{D}) \\
& (A+\bar{B}+\bar{C}+D) \quad \text { Standard POS form }
\end{aligned}
$$

## Minterm and Maxterm

- Minterm: Product terms in SOP
- Maxterm: Sum terms in POS
- Standard forms of SOP and POS can be derived from truth tables

| A | B | C | Z |  |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | $A+B+C$ |
| 0 | 0 | 1 | 1 | $\bar{A} \bar{B} C$ |
| 0 | 1 | 0 | 0 | $A+\bar{B}+C$ |
| 0 | 1 | 1 | 0 | $A+\bar{B}+\bar{C}$ |
| 1 | 0 | 0 | 0 | $\bar{A}+B+C$ |
| 1 | 0 | 1 | 1 | $A \bar{B} C$ |
| 1 | 1 | 0 | 1 | $A B \bar{C}$ |
| 1 | 1 | 1 | 1 | $A B C$ |

For SOP form,
$Z=\bar{A} \bar{B} C+A \bar{B} C+A B \bar{C}+A B C$
$=\sum m(1,5,6,7)$

For POS form,
$Z=(A+B+C)(A+\bar{B}+C)$
$(A+\bar{B}+\bar{C})(\bar{A}+B+C)$
$=\prod M(0,2,3,4)$

## Minterm and Maxterm

- How to design minterms - AND-OR logic

$$
Z=\bar{A} \bar{B} C+A \bar{B} C+A B \bar{C}+A B C
$$



Also known as
2 level logic

## Minterm and Maxterm

- How to design minterms - NAND-NAND Logic

$$
Z=\bar{A} \bar{B} C+A \bar{B} C+A B \bar{C}+A B C
$$



Using DeMorgan's Theorem

$$
Z=\overline{P \cdot Q \cdot R \cdot S}
$$

## Minterm and Maxterm

- How to design maxterms - OR-AND Logic

$$
Z=(A+B+C)(A+\bar{B}+C)(A+\bar{B}+\bar{C})(\bar{A}+B+C)
$$



## Minterm and Maxterm

- How to design maxterms - NOR-NOR Logic

$$
Z=(A+B+C)(A+\bar{B}+C)(A+\bar{B}+\bar{C})(\bar{A}+B+C)
$$



$$
Z=\overline{P+Q+R+S}
$$

## Minterm and Maxterm

- Can the minterm and maxterm logic be optimized?
- Yes, using Boolean algebra - explore yourself
- Yes, using Karnaugh maps - next lecture

