

ЧО AL DESCRIPTIONS MAGNETIC WAVES

LECTURE 4

ASSOC. PROF. DR. MAGED MARGHANY

innovative • entrepreneurial • global

ocw.utm.my

MATHEMATICAL FORMS OF ELECTROMAGENTIC WAVE

I. Basic concepts: Electromagnetic waves and types of polarization

- Plane-polarized wave: Horizontal
- Plane-polarized wave: Vertical
- Superposition of plane-polarized waves: Horizontal + Vertical \rightarrow 45° Plane
- Superposition of plane-polarized waves: Horizontal + Vertical → Right circular
 Superposition of plane-polarized waves: Horizontal + Vertical → Left circular
 Circularly polarized waves: Right and Left
- Superposition of circularly polarized waves: Right + Left circular \rightarrow Plane!

II. Interaction of light and matter

- Plane-polarized wave: Absorption
- Circularly polarized wave: Absorption
- Plane-polarized wave: Refraction
- Circularly polarized wave: Refraction
- Circular dichroism
- Circular birefringence
 - Circular dichroism AND birefringence

ANOTHER LOOK

Explanation of Frequency

Phase (waves)

The term phase can refer to several different things:

- It can refer to a specified reference, such as $\cos(2\pi ft)$, in which case we would say the **phase** of x(t) is θ , and the **phase** of y(t) is $\theta \pi/2$.
- It can refer to θ, in which case we would say x(t) and y(t) have the same phase but are relative to different references.
- In the context of communication waveforms, the time-variant angle $2\pi ft+\theta$, or its modulo 2π value, is referred to as **instantaneous phase**, but often just **phase**. *Instantaneous phase* has a formal definition that is applicable to more general functions and unambiguously defines a function's initial **phase** at t=0. Accordingly, it is θ for x(t) and $\theta-\pi/2$ for y(t). (also see phasor)

Instantaneous phase

In <u>signal processing</u>, the **instantaneous phase** (or "local phase" or simply "phase") of a complex-valued function x(t) is the real-valued function:

- Geometrically, in relation to an Argand diagram, arg z is the angle φ from the positive real axis to the vector representing z. The numeric value is given by the angle in radians and is positive if measured anticlockwise.
- Algebraically, an argument of the complex number z = x + iy is any real quantity φ such that

 $z = x + iy = r\cos \varphi + ir\sin \varphi$

for some positive real r. The quantity r is the *modulus* of z, written

$$r = |z| = \sqrt{x^2 + y^2}$$

The names **amplitude**^[1] or **phase**^[2] are sometimes used equivalently.

Principal value

 $z = |z| e^{i \arg(z)}.$

This is only really valid if z is non-zero but can be considered as valid also for z = 0 if arg(0) is considered as being an indeterminate form rather than as being undefined.

Some further identities follow. If z_1 and z_2 are two non-zero complex numbers then

$$\arg(z_1 z_2) = \arg(z_1) + \arg(z_2) \pmod{2\pi}, \text{ and}$$
$$\arg\left(\frac{z_1}{z_2}\right) = \arg(z_1) - \arg(z_2) \pmod{2\pi}.$$

If $z \neq 0$ and n is any integer then

```
\arg(z^n) = n \arg(z) \pmod{2\pi}.
```


Examples

Phase shift

Phase shift

is sometimes referred to as a phase-shift, because it represents
 "shift" from zero phase. But a change in
 is also referred to as a phase shift.

For infinitely long sinusoids, a change in θ is the same as a shift in time, such as a time-delay. If $\varphi(t)$ is delayed (time-shifted) by $\frac{1}{4}$ of its cycle, it becomes:

 $x(t-rac{1}{4}T) = A \cdot \cos(2\pi f(t-rac{1}{4}T)+ heta) = A \cdot \cos(2\pi f(t-rac{\pi}{4}T)+ heta),$

whose "phase" is now $\theta - \frac{\pi}{2}$. It has been shifted by $\frac{\pi}{2}$ radians.

Angular Frequency

Wave phase and angular frequency

Circularly polarized EM

Circularly polarized EM

Interaction of EM and matter: Absorption

Refraction

Circular bi-refringence

Circular dichroism AND bi-refringence

 $E_{z} = Ae^{-\varepsilon_{R}x} \sin(n_{R}x/\lambda - \omega t) + Ae^{-\varepsilon_{L}x} \sin(n_{R}x/\lambda - \omega t)$

Fields are functions of both position (x) and time (t)

The simplest solution to the partial differential equations is a sinusoidal wave: $E = E_{\max} \cos(kx - \omega t)$ $B = B_{max} \cos(kx - \omega t)$ The angular wave number is $k = 2\pi/\lambda$ λ is the wavelength The angular frequency is $\omega = 2\pi f$ f is the wave frequency

