Logic Gates and Boolean Algebra

- Logic Gates
- Inverter, OR, AND, Buffer, NOR, NAND, XOR, XNOR
- Boolean Theorem
- Commutative, Associative, Distributive Laws
- Basic Rules
- DeMorgan's Theorem
- Universal Gates
- NAND and NOR
- Canonical/Standard Forms of Logic
- Sum of Product (SOP)
- Product of Sum (POS)
- Minterm and Maxterm

Boolean Theorem

- Commutative Law
- In terms of the result, the order in which variables are ORed or ANDed makes no difference.

$$
A+B=B+A
$$

$$
A B=B A
$$

Boolean Theorem

- Associative Law
- When ORing or ANDing more than two variables, the result is the same regardless of the grouping of the variables.

$$
A+(B+C)=(A+B)+C
$$

$$
A(B C)=(A B) C
$$

Boolean Theorem

- Distributive Law
- A common variable can be factored from an expression just as in ordinary algebra.

$$
A B+A C=A(B+C)
$$

Boolean Theorem

- Basic Rules

$$
\begin{array}{ll}
\text { 1. } A+0=A & \text { 7. } A \cdot A=A \\
\text { 2. } A+1=1 & \text { 8. } A \cdot \bar{A}=0 \\
\text { 3. } A \cdot 0=0 & \text { 9. } \overline{\bar{A}}=A \\
\text { 4. } A \cdot 1=A & \text { 10. } A+A B=A \\
\text { 5. } A+A=A & \text { 11. } A+\bar{A} B=A+B \\
\text { 6. } A+\bar{A}=1 & \text { 12. }(A+B)(A+C)=A+B C
\end{array}
$$

Boolean Simplification - Example

- Using boolean theorem, Simplify the expression:

$$
A B+A(B+C)+B(B+C)
$$

Apply distributive law,

$$
A B+A B+A C+B B+B C
$$

Apply rule $7(\mathrm{BB}=\mathrm{B})$, and rule $5(\mathrm{AB}+\mathrm{AB}=\mathrm{AB})$

$$
A B+A C+B+B C
$$

Apply rule $10(\mathrm{~B}+\mathrm{BC}=\mathrm{B})$

$$
A B+A C+B
$$

Boolean Simplification - Example

$$
A B+A C+B
$$

Apply rule $10(\mathrm{AB}+\mathrm{B}=\mathrm{B})$

$$
B+A C
$$

At this point, the expression is simplified as much as possible

Original expression is $A B+A(B+C)+B(B+C)$
Which is logically equal to $B+A C$
what is the advantage of Boolean simplification?

Boolean Simplification - Example

Original expression is $A B+A(B+C)+B(B+C)$

Which is logically equal to $B+A C$
Faster
Compact design Lower cost

Boolean Simplification - Example

- Applying boolean theorem for logic simplification depends on a thorough knowledge of boolean algebra, with some ingenuity and cleverness
- Please look at Floyd's book examples 4-10, 411 , and $4-12$, as well as some exercises in the book to gain experience

DeMorgan's Theorem

- The complement of a product of variables is equal to the sum of the complemented variables

Theorem 1

$$
\overline{A B}=\bar{A}+\bar{B}
$$

A	B	$\overline{A \cdot B}$	$\bar{A}+\bar{B}$
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

DeMorgan's Theorem

Theorem 2

$$
\overline{A+B}=\bar{A} \cdot \bar{B}
$$

A	B	$\overline{A+B}$	$\bar{A} \cdot \bar{B}$
0	0	1	1
0	1	0	0
1	0	0	0
1	1	0	0

Universal Gates

- NAND and NOR gates are known as Universal gates because all logic gates can be represented by NAND and NOR
- NAND and NOR are the cheapest and smallest to manufacture in Integrated Circuits compared to AND and OR
- Therefore NAND and NOR are always used in practical circuit design

NAND Universal Gates

- How to represent inverter using NAND gates?

NAND gate truth table

X	Y	$Z=\overline{X \cdot Y}$
0	0	1
0	1	1
1	0	1
1	1	0

Short the inputs together

NAND Universal Gates

- How to represent OR gate using NAND gates?

Logic expression for OR gate:

$$
X+Y \equiv \overline{\overline{X+Y}}
$$

Using DeMorgan's Theorem,

$$
\overline{\bar{X} \cdot \bar{Y}}
$$

NAND Universal Gates

- How to represent AND gate using NAND gates?

Logic expression for AND gate:

$$
X \cdot Y \equiv \bar{X} \cdot Y
$$

NOR Universal Gates

