

Logic Gates and Boolean Algebra

- Logic Gates
 - Inverter, OR, AND, Buffer, NOR, NAND, XOR, XNOR
- Boolean Theorem
 - Commutative, Associative, Distributive Laws
 - Basic Rules
- DeMorgan's Theorem
- Universal Gates
 - NAND and NOR
- Canonical/Standard Forms of Logic
 - Sum of Product (SOP)
 - Product of Sum (POS)
 - Minterm and Maxterm

- Commutative Law
 - In terms of the result, the order in which variables are ORed or ANDed makes no difference.

- Associative Law
 - When ORing or ANDing more than two variables, the result is the same regardless of the grouping of the variables.

A + (B + C) = (A + B) + C

- Distributive Law
 - A common variable can be factored from an expression just as in ordinary algebra.

- Basic Rules
 - 1. A + 0 = A 7. $A \cdot A = A$

 2. A + 1 = 1 8. $A \cdot \overline{A} = 0$

 3. $A \cdot 0 = 0$ 9. $\overline{\overline{A}} = A$

 4. $A \cdot 1 = A$ 10. A + AB = A

 5. A + A = A 11. $A + \overline{AB} = A + B$

 6. $A + \overline{A} = 1$ 12. (A + B)(A + C) = A + BC

Using boolean theorem, Simplify the expression:

AB + A(B+C) + B(B+C)

Apply distributive law,

AB + AB + AC + BB + BC

Apply rule 7 (BB = B), and rule 5 (AB + AB = AB)

AB + AC + B + BC

Apply rule 10 (B + BC = B)

AB + AC + B

AB + AC + B

Apply rule 10 (AB + B = B)

B + AC

At this point, the expression is simplified as much as possible

Original expression is AB + A(B+C) + B(B+C)Which is logically equal to B + ACwhat is the advantage of Boolean simplification?

Original expression is AB + A(B+C) + B(B+C)

- Applying boolean theorem for logic simplification depends on a thorough knowledge of boolean algebra, with some ingenuity and cleverness
- Please look at Floyd's book examples 4-10, 4-11, and 4-12, as well as some exercises in the book to gain experience

DeMorgan's Theorem

 The complement of a product of variables is equal to the sum of the complemented variables

A	В	$\overline{A \cdot B}$	$\overline{A} + \overline{B}$
0	0	1	1
0	1	1	1
1	0	1	1
1	1	0	0

DeMorgan's Theorem

Theorem 2

 $\overline{A + B} = \overline{A} \cdot \overline{B}$

A	В	$\overline{A+B}$	$\overline{A} \cdot \overline{B}$
0	0	1	1
0	1	0	0
1	0	0	0
1	1	0	0

Universal Gates

- NAND and NOR gates are known as Universal gates because all logic gates can be represented by NAND and NOR
- NAND and NOR are the cheapest and smallest to manufacture in Integrated Circuits compared to AND and OR
- Therefore NAND and NOR are always used in practical circuit design

NAND Universal Gates

• How to represent inverter using NAND gates?

NAND Universal Gates

How to represent OR gate using NAND gates?

Logic expression for OR gate:

$$X + Y \equiv X + Y$$

NAND Universal Gates

How to represent AND gate using NAND gates?
 x ________
 z

Logic expression for AND gate:

$$X \cdot Y \equiv \overline{X \cdot Y}$$

A.A.H Ab-Rahman, Z.Md-Yu