SEE3243
 Digital System

Lecturers:
Muhammad Mun'im Ahmad Zabidi
Muhammad Nadzir Marsono
Kamal Khalil

Chapter 2: Logic Theory

Implicant, Prime Implicant and Essential Prime Implicant

- Implicant - a single minterm or group of minterms that can be combined together on the K-map. $A^{\prime} B^{\prime} C^{\prime}, A^{\prime} B C^{\prime}, A^{\prime} B C, A B C, A^{\prime} C^{\prime}, A^{\prime} B$, and

$$
F(A, B, C)=\Sigma m(0,2,3,7)
$$ BC.

- Prime Implicant - Implicant that can not be combined with another one to remove a literal. $A^{\prime} C^{\prime}, A^{\prime} B, B C$.
- Essential Prime Implicant - A prime implicant that includes a minterm not covered by any
 other prime implicant. $A^{\prime} C^{\prime}$ and $B C$. Why? $A^{\prime} B^{\prime} C^{\prime}$ only covered by $A^{\prime} C^{\prime}$ and $A B C$ only covered by $B C$.

Finding Minimum Expression

- Draw the K-map and put 1's in each square that corresponds to a minterm of the function.
- Find the prime implicants. Groups must be a power of 2.
- Find the essential prime implicants. An essential prime implicant is a prime implicant that includes 1's that are not covered by any other prime implicants.
- Write down the minimized expression. First write down all essential prime implicants. If there are any 1's not covered by prime implicants, carefully select prime implicants to cover the remaining 1's. Note, you may have to try several selections to find the minimal form of the expression.

Confuse with the steps? Another example

- Use a K-map to simplify the following Boolean function:

$$
\begin{aligned}
& F(A, B, C, D)=\Pi M(0,1,2,4,9,11,15) \\
& F(A, B, C, D)=\sum m(3,5,6,7,8,10,12,13,14)
\end{aligned}
$$

Prime Implicants

Essential Prime Implicants

Final Expression

$$
F(A, B, C, D)=B C^{\prime} D+A D^{\prime}+A^{\prime} C D+B C D^{\prime}
$$

Entered Variable K-Map (EVM)

- EVM extends map for function with too many variable for a ordinary Karnaugh Map
- Let say ordinary K Map has n map variable. So far we've looked to 4 map variables, max.
- If a function has ($\boldsymbol{m}+\boldsymbol{n}$) variables, to be fit into n -bit K-map, \boldsymbol{m} bit must reside into n-bit minterm in K map as entered variable.
- Fortunately, in this lecture, $m=1$
- Confuse?

An example

- $F=A^{\prime} B C D+A^{\prime} B^{\prime} C D E+A B C^{\prime} D^{\prime} E^{\prime}$
$+A^{\prime} B C^{\prime} D E^{\prime}$
- $A, B, C, D-m a p$ variables.
- E - entered variable. The entered variable completes the expression represented by the map variables.
- The second term is loaded in the 0011 cell because of $A^{\prime} B^{\prime} C D$. The cell is loaded with E to complete the term.
- The final 2 terms are treated in the same way.
 For $A B C^{\prime} D^{\prime} E^{\prime}$, the 1100 cell is loaded with E. For $A^{\prime} B C^{\prime} D E^{\prime}$ the 0101 cell is loaded with E^{\prime}.

SOP example

- In this example, a function with 4 variables need to be re-organise in K-map with 3 map variables only.
- In the above K-map, in every combination of A, B and C, we will compare the output with variable D.
- If the output is the complement of D, put D^{\prime} inside that particular cell.
- Another way is by using truth table first, then into 3-bit K map.

SOP example

- From previous function, let say F, we first organise it into a truth table.
- Then find the entered variables.
- Reorganise into 3-bit K map.

A	B	C	D	F	EV
0	0	0	0	0	
0	0	0	1	0	0
0	0	1	0	0	
0	0	1	1	1	
0	1	0	0	1	
0	1	0	1	0	
0	1	1	0	1	
0	1	1	1	0	
1	0	0	0	0	
1	0	0	1	1	
1	0	1	0	0	
1	0	1	1	1	
1	1	0	0	1	
1	1	0	1	1	
1	1	1	0	1	
1	1	1	1	0	

How to minimise EVM

EVM grouping rules

- Entered variables can be grouped with
- Other identical entered variables
- 1s
- Find and circle all the single EV's which cannot be grouped
- Find and group all single EV's which can be grouped in only one way with other entity
- Find and group all single EV's which can be grouped in more than one way. Group these variables
- first with another identical ungrouped entered variable
- second with uncovered or partially covered 1
- make arbitrary choice when needed

Example 1

- Still the same function.
- ' 1 ' in ABC' can be decomposed to D+D'.
- Then, group the identical entered variables.
- Follow the procedure.

- $F(A, B, C, D)=B D^{\prime}+B^{\prime} C D+A C^{\prime} D$

- Now, compare function F from EVM in previous slide with the minimisation result from the original 4-bit K map.
- Do you get the same answer?

$A B{ }^{C D}$	00	01	11	10
00	0	1		2
01	1^{4}	5	7	$1{ }^{6}$
11	1^{12}	1^{13}	15	1^{14}
10	8	1^{9}	1^{11}	10

$F(A, B, C, D)=$ \qquad

Example 2

- Lets call this function G .
- ' 1 ' in $A^{\prime} B^{\prime} C^{\prime}$ can be decomposed to $D+D^{\prime}$.
- Then, group the identical entered variables.
- Follow the procedure.
$-F(A, B, C, D)=C D+B^{\prime} C^{\prime} D^{\prime}+B C+$ $A^{\prime} B^{\prime} D$

- Now, compare function G from EVM in previous slide with the minimisation result from the original 4-bit K map.
- Do they yield the same answer?

$A B{ }^{C}$	00	01	11	10
00		1^{1}	1^{3}	2
01	4	5	1^{7}	1^{6}
11	12	13	1^{15}	1^{14}
10	1^{8}	9	1^{11}	10

$G(A, B, C, D)=$ \qquad

Example 3

- Change 1 to $\mathrm{E}+\mathrm{E}^{\prime}$
- Then group entries with neighbour cells that have the same entered variable
- Note that all the entities are covered
- $F=A B C^{\prime} D^{\prime} E^{\prime}+A^{\prime} B D E^{\prime}+A^{\prime} C D E$

Example 4

- What if not all entities covered?
- In this example, partially covered ' 1 ' at $A^{\prime} B C D$ must be covered (so that the E' variable is covered).
- Thus, $F=A B C^{\prime} D^{\prime} E^{\prime}+A^{\prime} B C E+A^{\prime} C D E+A^{\prime} B C D$

Example 5

- F is a function of A, B, C, D, E.
- Let E become entered variable

$F(A, B, C, D, E)$
$=B^{\prime} D^{\prime}+A B^{\prime} E^{\prime}+B C^{\prime} D E^{\prime}+$ $A^{\prime} C D^{\prime} E^{\prime}+A B C D E$

A	B	C	D	E	F	A	B	C	D	E	\mathbf{F}	
0	0	0	0	0	$\mathbf{1}$	1	1	0	0	0	0	$\mathbf{1}$
0	0	0	0	1	$\mathbf{1}$	1	0	0	0	1	$\mathbf{1}$	
0	0	0	1	0	$\mathbf{0}$	1	0	0	1	0	$\mathbf{1}$	
0	0	0	1	1	$\mathbf{0}$	1	0	0	1	1	$\mathbf{0}$	
0	0	1	0	0	$\mathbf{1}$	1	0	1	0	0	$\mathbf{1}$	
0	0	1	0	1	$\mathbf{1}$	1	0	1	0	1	$\mathbf{1}$	
0	0	1	1	0	$\mathbf{0}$	1	0	1	1	0	$\mathbf{1}$	
0	0	1	1	1	$\mathbf{0}$	1	0	1	1	1	$\mathbf{0}$	
0	1	0	0	0	$\mathbf{0}$	1	1	0	0	0	$\mathbf{0}$	
0	1	0	0	1	$\mathbf{0}$	1	1	0	0	1	$\mathbf{0}$	
0	1	0	1	0	$\mathbf{1}$	1	1	0	1	0	$\mathbf{1}$	
0	1	0	1	1	$\mathbf{0}$	1	1	0	1	1	$\mathbf{0}$	
0	1	1	0	0	$\mathbf{1}$	1	1	1	0	0	$\mathbf{0}$	
0	1	1	0	1	$\mathbf{0}$	1	1	1	0	1	$\mathbf{0}$	
0	1	1	1	0	$\mathbf{0}$	1	1	1	1	0	$\mathbf{0}$	
0	1	1	1	1	$\mathbf{0}$	1	1	1	1	1	$\mathbf{1}$	

How to solve EVM in POS?

- Almost the same procedure like solving EVM in SOP.
- The differences,
- Group identical EV
- Substitute '0' with EV.EV' (Example D.D').
- Except for 0-0 grouping, complement EV when writing in SOP.
- Complement using De-Morgan
- More confused? You should.

Example 1

- Lets call this function H .
- Note that in cell $A^{\prime} B^{\prime} C^{\prime}$, the EV is ' 0 ', and written as D'.D.

$A B\rangle^{C D} 00$		01	11	10
	0	1	3	2
00	0	0		0
01	4	0^{5}	${ }^{7}$	6
11	${ }^{12}$	13	15 0	14
10		9	${ }^{11}$	
	0			0

$$
\begin{aligned}
& H^{\prime}(A, B, C, D)=B^{\prime} D^{\prime}+A^{\prime} C^{\prime} D+B C D \\
& H(A, B, C, D)=(B+D)\left(A+C+D^{\prime}\right)\left(B^{\prime}+C^{\prime}+D^{\prime}\right)
\end{aligned}
$$

- Now, compare function H from EVM in previous slide with the minimisation result from the original 4-bit K map.
- Do they yield the same answer?

${ }^{\text {AB }}{ }^{C D}{ }^{\text {a }} 000010110$					$H^{\prime}(A, B, C, D)=$
00	$0{ }^{0}$	0^{1}	3	0^{2}	
01	4	0^{5}	0^{7}	6	
11	${ }^{12}$	${ }^{13}$	0^{15}	14	$\mathrm{H}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})$
10	0^{8}	9	${ }^{11}$	0^{10}	

DIY

- Now, you try.
- Check your answer with 4-bit K map POS minimisation.

EVM

$\mathrm{H}^{\prime}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=$ \qquad
$H(A, B, C, D)=$ \qquad

4-bit K map
$H^{\prime}(A, B, C, D)=$ \qquad
$H(A, B, C, D)=$ \qquad

Logic Transformation

- By performing transformation operations, different (and possibly simpler) gate networks for the same function are possible.
- Simple equivalencies:

- Based on DeMorgan's Theorems
- $(A B)^{\prime}=A^{\prime}+B^{\prime}$
- $(A+B)^{\prime}=A^{\prime} B^{\prime}$
- Thus, AND-OR networks can be transformed to OR-NAND, NAND-NAND, NOR-OR, etc.

Example

- This transformation changes AND-OR form into OR-NAND form.
- However, usually we are interested in transforming circuit (SOP or POS) into negative logics (yes.. NAND, NOR, Inverter).
- Why? Negative logic is extensively used in VLSI.

Another Example (NAND-NAND)

Another Example (NOR-NOR)

Transformation: General Rules (AND-OR-INVERTER Network only)

- To convert to NAND-only form
- Begin with SOP form with an OR gate output (if not, add inverter at the output later)
- AND (odd level) and OR (even level) gates must alternate between levels! ($1,2, .$. n)
- Level 0 for input
- Replace all gates with NAND gates
- Put inverter if no gate between $2 \boldsymbol{k}$ ($k=1,2, .$. m) level.
- Algorithm for NOR-form is similar, but start with POS form, OR (odd level) and AND (even level). Still, if the output is not AND gate, add inverter later.

Example 1 (NAND-NAND)

Example 2 (NOR-NOR)

DIY 1

- Implement this function using NAND-NAND transformation (don't derive the K-map or the truth table)

$$
F(A, B, C, D, E, F, G, H, I, J)=((A+B)+C+D E) .((G+H) \cdot F . I) \cdot(J)
$$

DIY 2

- Implement this function using NOR-NOR transformation
- $F(A, B, C, D)=(B+D)\left(A+C+D^{\prime}\right)\left(B^{\prime}+C^{\prime}+D^{\prime}\right)$

DIY3

- Transform this equation into NOR-NOR gates

$$
-F(A, B, C, D)=\left(A B^{\prime}\left(C^{\prime}+B D^{\prime}\right)\right)+A^{\prime}\left(B C+D\left(A^{\prime}+B\right)\right)
$$

DIY 4

- Transform this equation into NAND-NAND gates
$-F(A, B, C, D)=\left(A B^{\prime}\left(C^{\prime}+B D^{\prime}\right)\right)+A^{\prime}\left(B C+D\left(A^{\prime}+B\right)\right)$

Introduction to Hazard and Glitch

- A hazard is a characteristic of a circuit.
- A glitch is an unwanted pulse that may occur in a circuit with a hazard.
- A circuit with a hazard may or may not glitch.
- As an analogy a wet floor at the supermarket is a hazard. It's not a problem unless someone slips and falls which would be a glitch.
- The state of a circuit and the pattern of input values determines if a circuit with a hazard will cause glitch.

Types of Hazards

- A static hazard is when the output should remain static but experiences an unwanted pulse.
- A dynamic hazard is when the output should go through a smooth transition but changes more than once before settling at the new value.

Example 1

- $F(A, B, C)=A B^{\prime}+B C$

Example 2

- $F(A, B, C)=(A+B)\left(B^{\prime}+C\right)$

Example 3

- $F=A B D+A B E+C D+C E$
- 5 gates, 14 inputs
- It can be factored: simpler but has short and long delay paths. Inequalities of delays between paths will contribute to hazards

What's Next

- You will look at the MSI design. How to use standard devices to realise digital circuitry.
- Make sure you understand this chapter first.

