

MICROWAVE

P

NOL

RODO

LECTURE 3

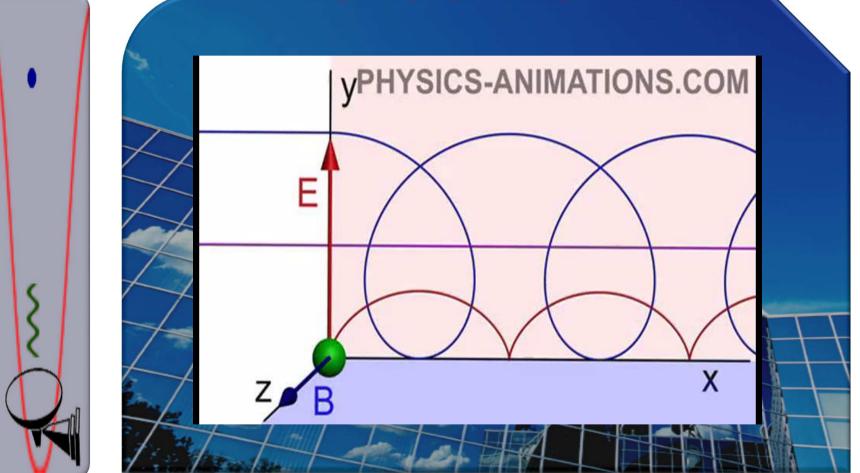
ASSOC. PROF. DR. MAGED MARGHANY

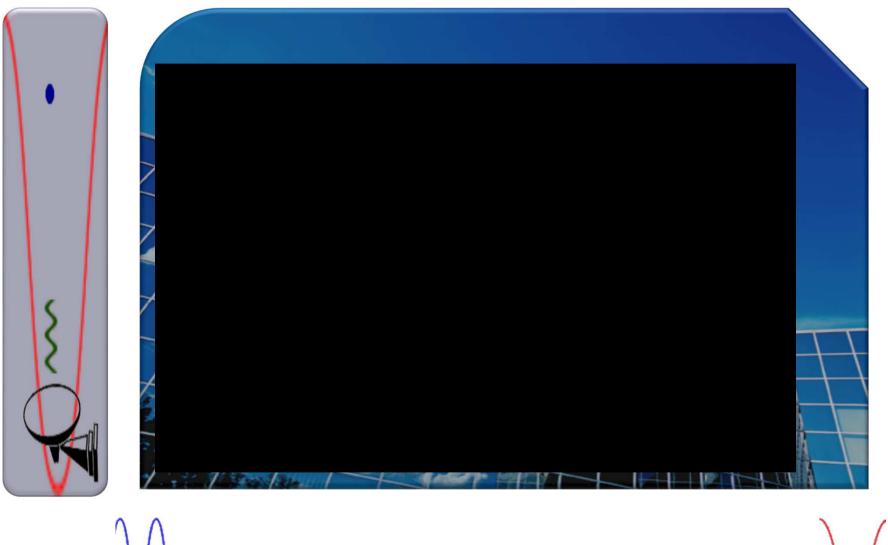
innovative • entrepreneurial • global

ocw.utm.my

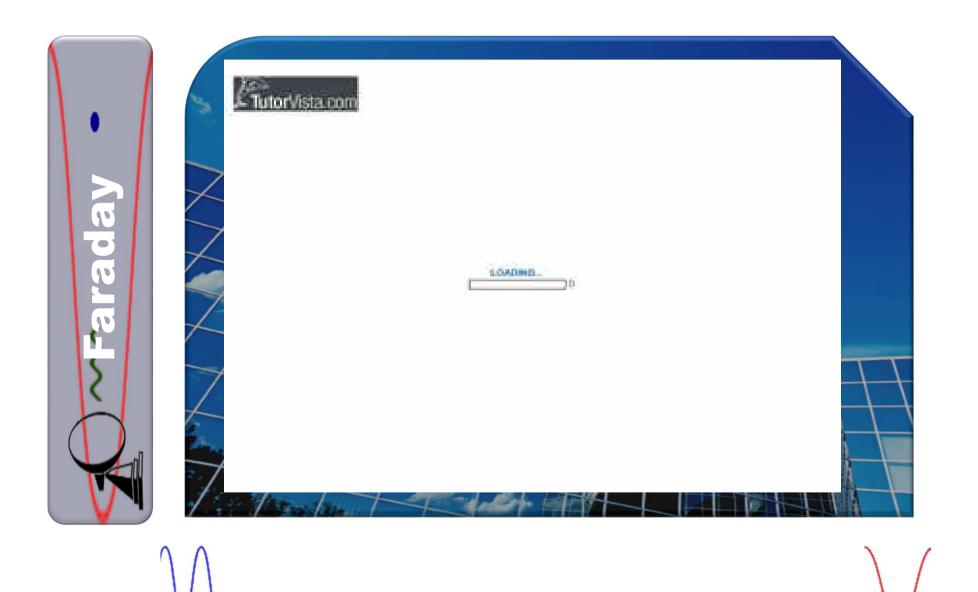
RIGHT HAND RULE

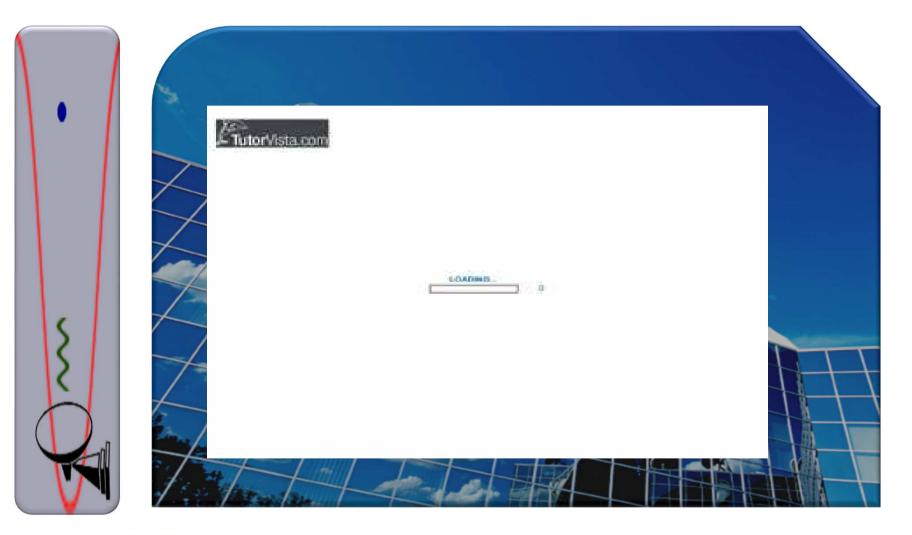
ELECTROMAGENTIC WAVE PROPOGATION





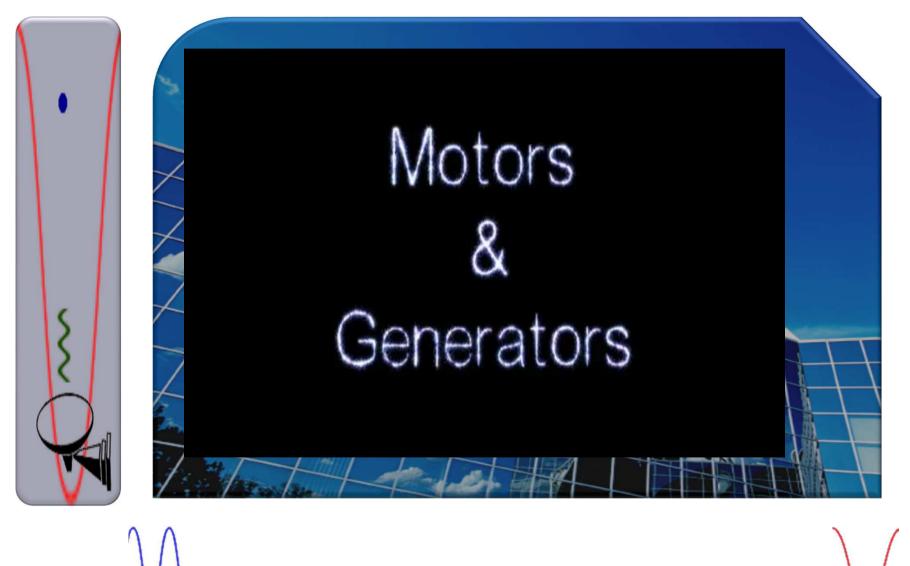
There are three descriptions of sight. ·Light behaves as a geometric line (ray) Light behaves as a wave (second most complex and 99% valid Light behaves as a quantum mechanical particle. We propagate E (field): $\nabla^2 \vec{E}(t, \vec{r}) - \frac{1}{c^2} \frac{d^2 \vec{E}(t, \vec{r})}{dt^2} = 0 \quad \text{Ware Equation}$ One solution for E (field) is the plane ways: $\vec{E}(t,z) = \vec{E}e^{j(\omega \tau - \vec{k} \cdot \vec{r})} \Rightarrow \hat{y}E_{\sigma}e^{(\omega \tau - \vec{k})}$ Relate space and time through phase $e^{ab} \Rightarrow \Phi = ab - kz$



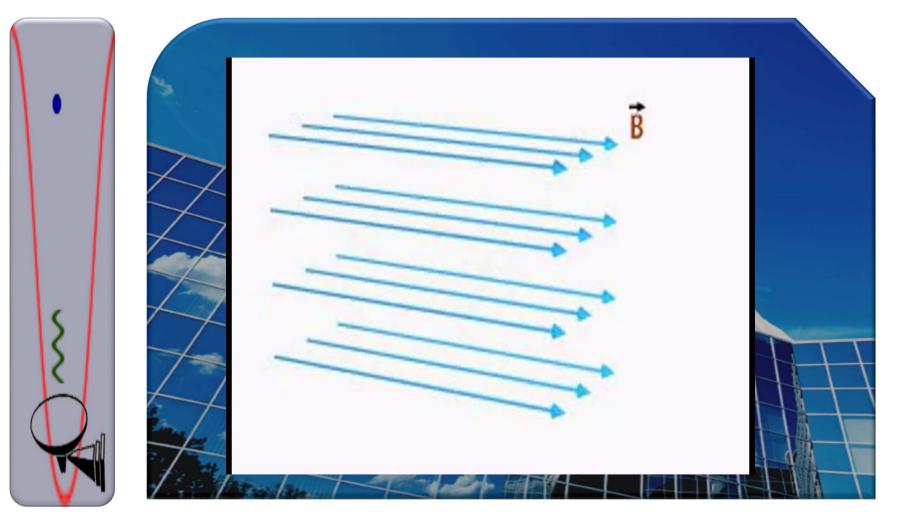


(

SIMPLE EXAMPLE OF HOW EM WORKS

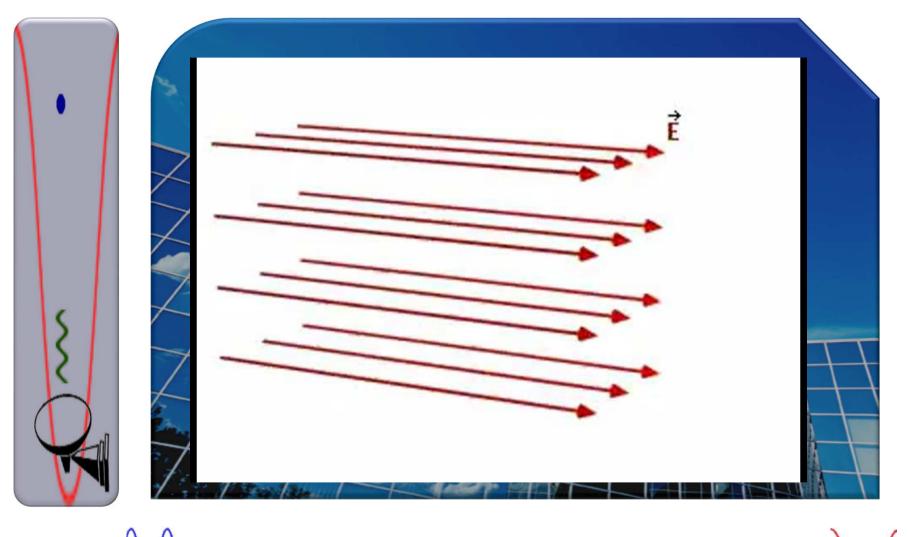


MAGNETIC FLUX



 \setminus /

ELECTRIC FLUX



are four differential equations summarizing nature of electricity and magnetism: (formulated by James Clerk Maxwell around 1860):

 $\vec{\nabla}\!\cdot\!\vec{D}=\rho$

 $\vec{\nabla}\cdot\vec{B}=0$

 $\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ $\vec{\nabla} \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$

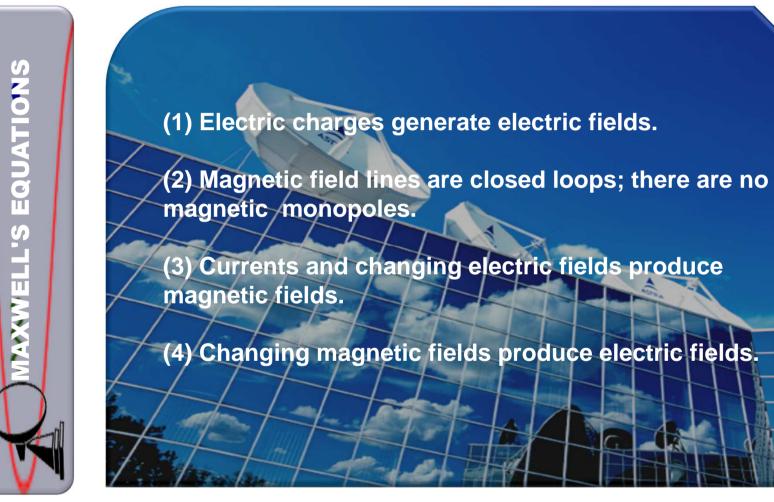
 ∂t

Faraday's Law

Gauss's Law for Magnetism

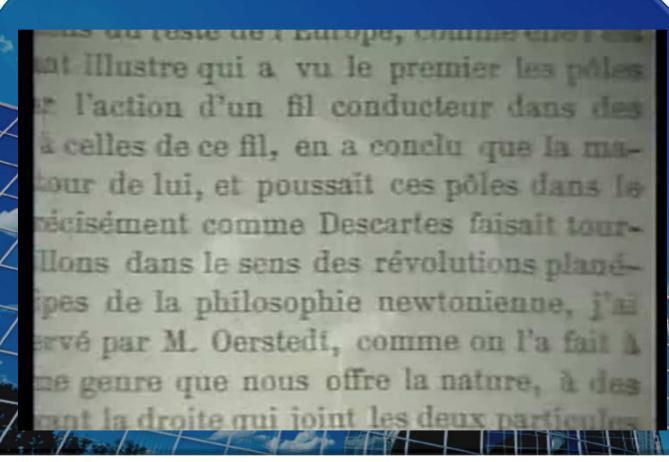
Gauss's Law

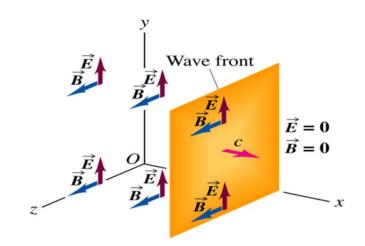
Ampere's Law



From Maxwell's equations one can derive another equation which has the form of a "wave equation".

ELECTROMAGENTIC

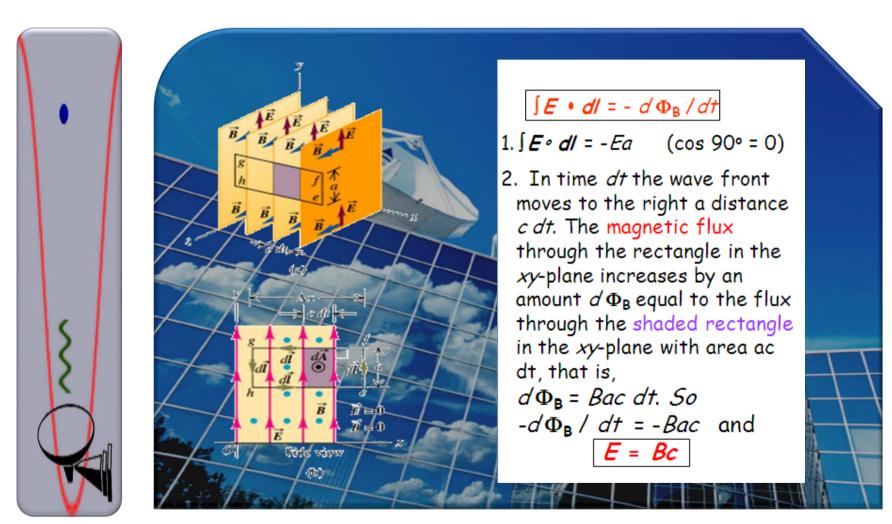


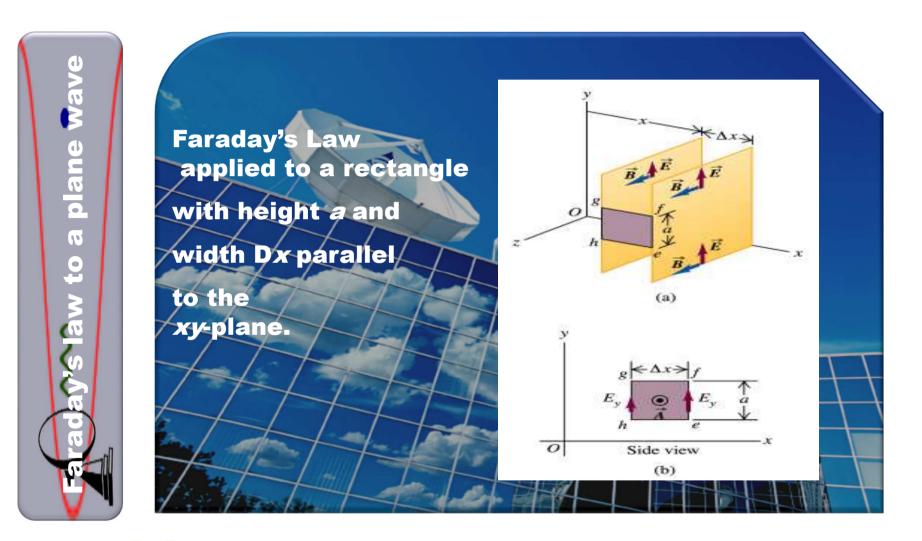


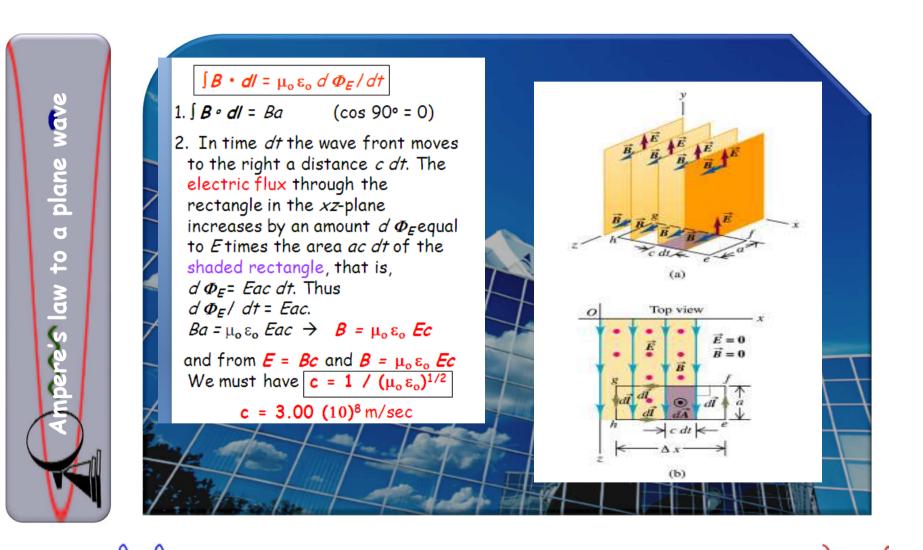
An electromagnetic wave front. The plane representing the wave front (yellow) moves to the right with speed c.

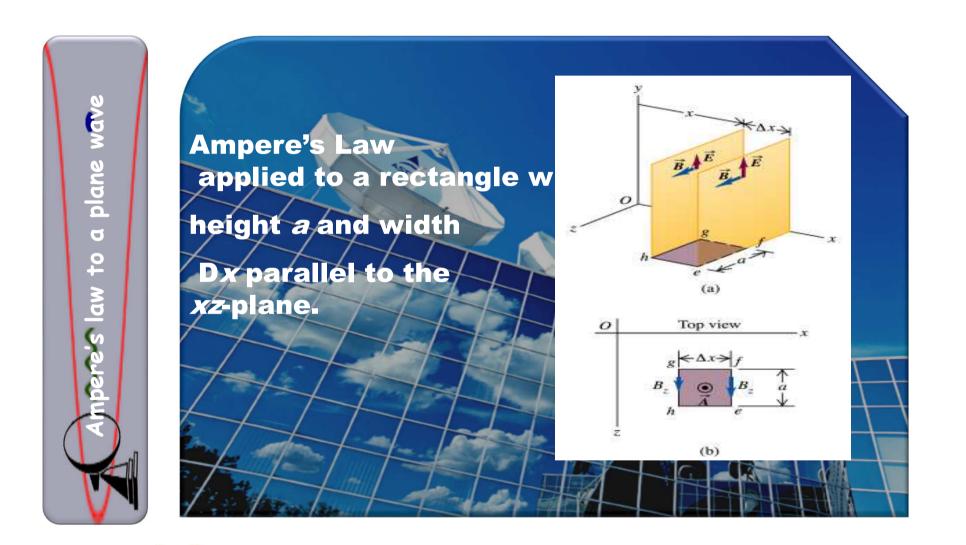
The **E** and **B** fields are uniform over the region behind the wave front but are zero everywhere in front of it.











ocw.utm.my

 $\int_{S} \mathbf{E} \cdot d\mathbf{A} = \frac{q}{\varepsilon_0}$

Gauss's law (electrical):

The total electric flux through any closed surface equals the net charge inside that surface divided by \mathcal{E}_0

This relates an electric field to the charge distribution that creates it

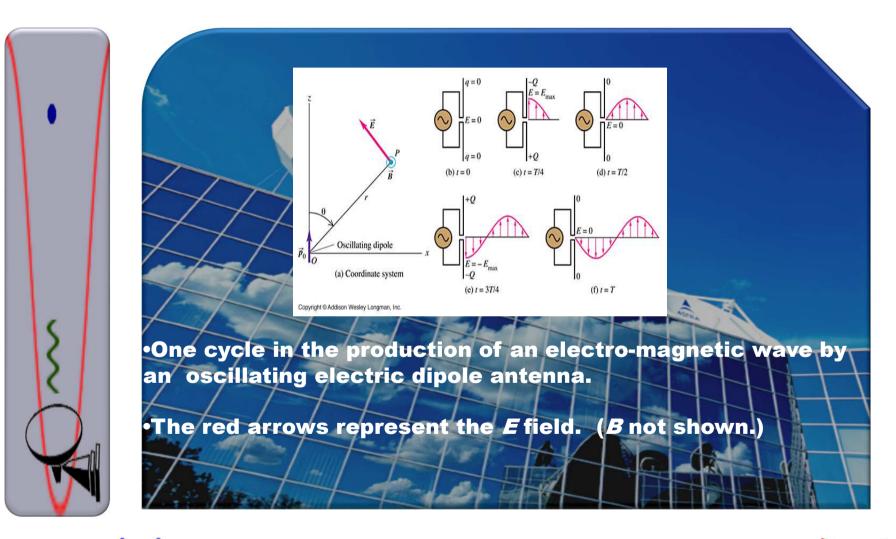
Gauss's law (magnetism):

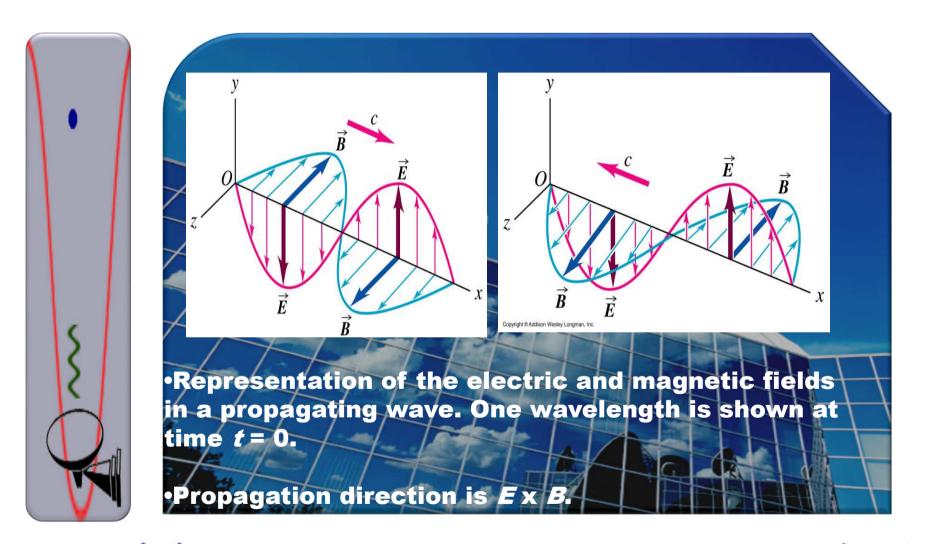
The total magnetic flux through any closed surface is zero

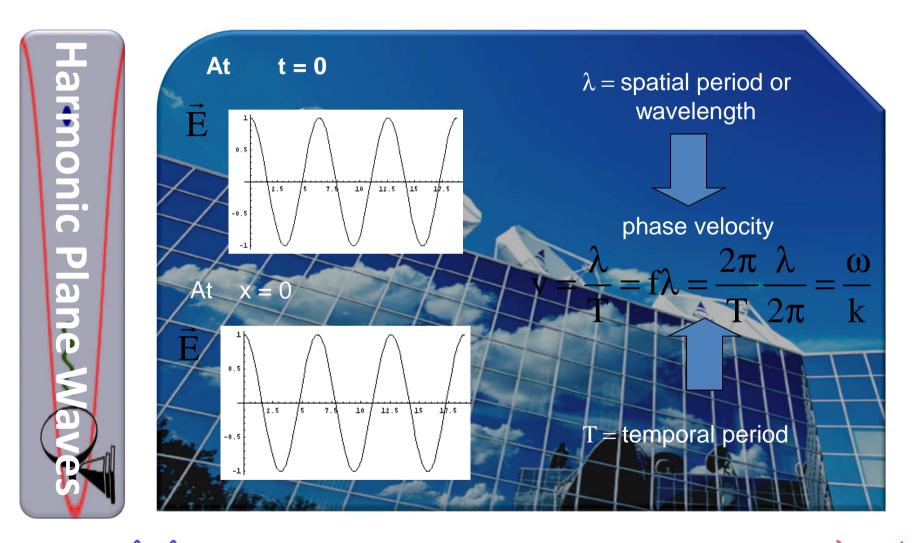
 This says the number of field lines that enter a closed volume must equal the number that leave that volume

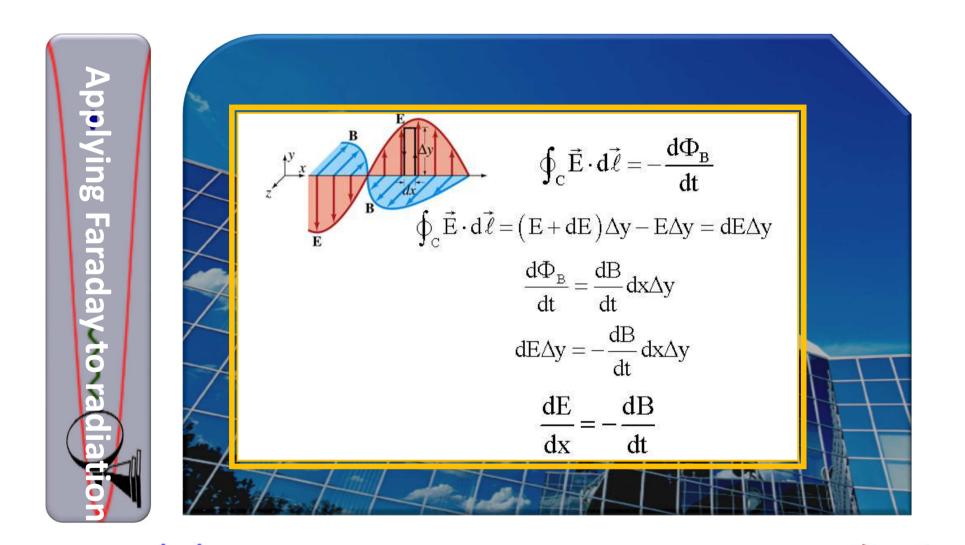
 This implies the magnetic field lines cannot begin or end at any point

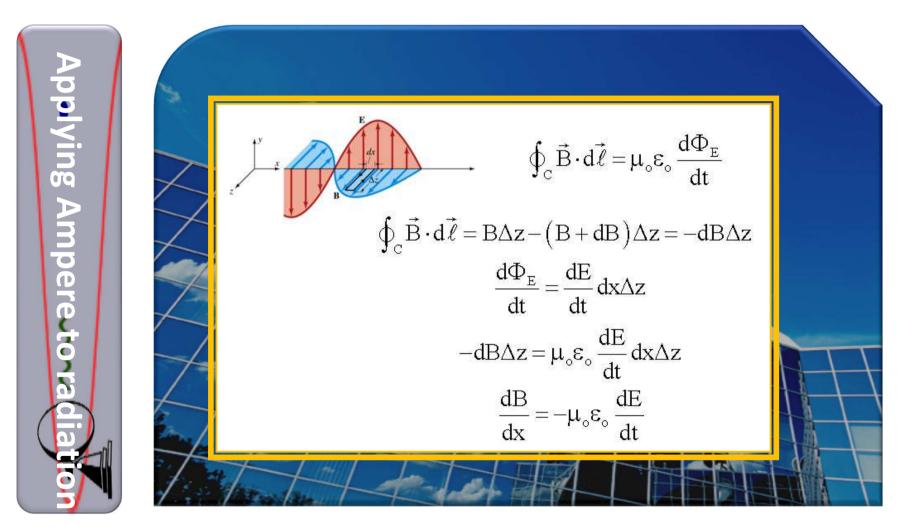
magnetic mo



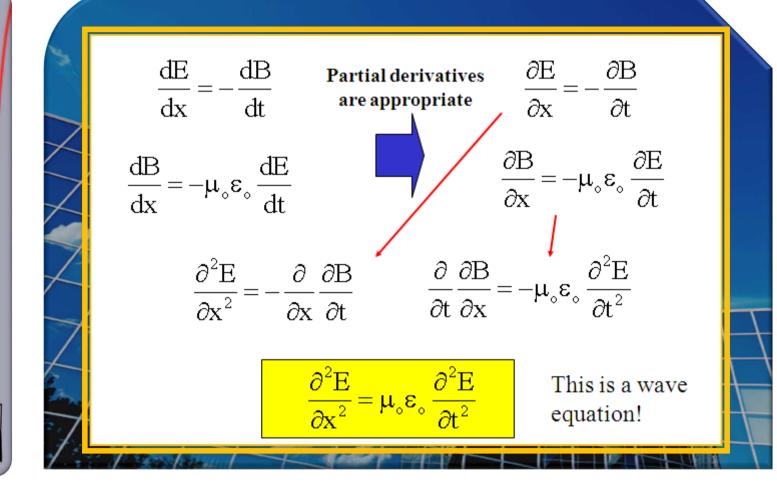








Fields are functions of both position (x) and time (t)



The simplest solution to the partial differential equations is a sinusoidal wave: $E = E_{\max} \cos(kx - \omega t)$ $B = B_{max} \cos(kx - \omega t)$ The angular wave number is $k = 2\pi/\lambda$ λ is the wavelength The angular frequency is $\omega = 2\pi f$ f is the wave frequency

