SEE 1223: Digital Electronics 1 - Number Systems

ocw.utm.my

Number Systems

- Standard number systems
- Decimal
- Binary
- Hexadecimal
- Octal
- Binary Codes
- Binary Coded Decimal (BCD)
- Gray Codes
- ASCII
- Representation of negative numbers
- Sign magnitude
- 1's complement and 2's complement
- Arithmetic operations using 2's complement

Binary Numbers

- Counting in binary and decimal:

Binary		Decimal	
0000	=>	0	
0001	=>	1	
0010	=>	2	
0011	=>	3	
0100	=>	4	
0101	=>	5	How to represent 16 in binary?
0110	=>	6	=> $10000{ }_{2}$
0111	=>	7	
1000	=>	8	How to represent decimal 33?
1001	=>	9	=> 100001 ${ }_{2}$
1010	=>	10	
1011	=>	11	What is the value of 100101_{2}
1100	=>	12	=> 37
1101	=>	13	
1110	=>	14	
1111	=>	15	

Binary Numbers (cont.)

- Binary number system uses " 0 " and " 1 "
- Example: find the decimal value of 00101

Bit Position:	4	3	2	1	0
Binary:	0	0	1	0	1
Decimal:	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow
	0×2^{4}	${ }^{4} \times 2^{3}$	1×2^{2}	0×2^{1}	1×2^{0}
	$0+$	$0+$	$4+$	$0+$	1

Therefore, $00101_{2}=5_{10}$

Binary Numbers (cont.)

- Convert these binary numbers to decimal:

$$
\begin{array}{ll}
-1010_{2} & \Rightarrow 2^{3}+2^{1}=10 \\
-10111_{2} & \Rightarrow 2^{4}+2^{2}+2^{1}+2^{0}=23
\end{array}
$$

- Convert these decimal numbers to binary:
$-19 \quad \Rightarrow 2^{4}+2^{1}+2^{0}=10011_{2}$
$-58 \quad \Rightarrow 2^{5}+2^{4}+2^{3}+2^{1}=111010_{2}$

Hexadecimal Numbers

- Counting in hexadecimal

Binary		Decimal		Hexadecimal	
0000	=>	0	=>	0	
0001	=>	1	=>	1	
0010	=>	2	=>	2	
0011	=>	3	=>	3	How to
0100	=>	4	=>	4	
0101	=>	5	=>	5	
0110	=>	6	=>	6	Conti
0111	=>	7	=>	7	
1000	=>	8	=>	8	11, 12,
1001	=>	9	=>	9	1B, 1C
1010	=>	10	=>	A	
1011	=>	11	=>	B	
1100	=>	12	=>	C	
1101	=>	13	=>	D	
1110	=>	14	=>	E	
1111	=>	15	=>	F	

Hexadecimal Numbers (cont.)

- Hexadecimal number conversion: Convert 1011011011001_{2} to hexadecimal break binary into 4 groups
Binary:

Hexadecimal: 16 D $9{ }_{16}$

Can you convert this hex number to decimal?

$$
=>1 \times 16^{3}+6 \times 16^{2}+13 \times 16^{1}+9 \times 16^{0}=5849_{10}
$$

Hexadecimal Numbers (cont.)

- Convert the following to binary:
- CF8E ${ }_{16}$ => 110011111000 1110 $_{2}$
$-974_{16} \quad \Rightarrow 100101110100_{2}$
- Convert the following to hexadecimal
$-111100001010_{2} \Rightarrow$ FOA $_{16}$
$-10000111011001_{2}=>21 \mathrm{D9} 9_{16}$

Octal Numbers

- Counting in Octal

Binary	Decimal	Hexadecimal	Octal	
0000 =>	0 =>	0 =>	0	
0001 =>	1 =>	1 =>	1	
0010 =>	2 =>	$2=>$	2	
$0011=>$	3 =>	3 =>	3	
0100 =>	$4=$	$4=>$	4	
0101 =>	5 =>	$5 \quad=>$	5	
0110 =>	6 =>	$6 \quad=>$	6	
$0111=$	7 =>	7 =>	7	After 178?
1000 =>	8 =>	8 =>	10	
1001 =>	9 =>	9 =>	11	=> 208
1010 =>	10 =>	A =>	12	
1011 =>	11 =>	B =>	13	
1100 =>	12 =>	C =>	14	
1101 =>	13 =>	D =>	15	
$1110=>$	14 =>	E =>	16	
1111 =>	15 =>	F =>	17	

Octal Numbers (cont.)

- Octal numbers conversion: Convert 1011111010001 to octal
break binary into 3 groups
Binary:

Octal:
13721_{8}

Can you convert this octal number to decimal?

$$
=>1 \times 8^{4}+3 \times 8^{3}+7 \times 8^{2}+2 \times 8^{1}+1 \times 8^{0}=6097_{10}
$$

Octal Numbers (cont.)

- Convert the following to binary

$$
\begin{array}{ll}
-25_{8} & =>10101_{2} \\
-140_{8} & \Rightarrow>001100000_{2}
\end{array}
$$

- Convert the following to octal
$-110101_{2} \quad=>658$
-1101111001_{2} => 1571_{8}

More Number Conversions

- Convert $\mathrm{A}_{1} \mathrm{~B}_{16}$ to binary and decimal - easy
- Convert 650_{10} to hexadecimal - 2 ways
- Convert to binary first, then to hex
- Convert directly to hex

More number conversions (cont.)

650_{10} to binary using repeated division method:
$650 / 2=325$, remainder $0 \longleftarrow$ Least significant bit (MSB) $325 / 2=162$, remainder 1
$162 / 2=81$, remainder 0
$81 / 2=40$, remainder 1
$40 / 2=20$, remainder 0
$20 / 2=10$, remainder 0
$10 / 2=5$, remainder 0
$5 / 2=2$, remainder 1
$2 / 2=1$, remainder 0
$1 / 2=0$, remainder $1 \longleftarrow$ Most significant bit (MSB)
Therefore, $650_{10}=1010001010_{2}$
What is 650_{10} in hexadecimal? $\quad 650_{10}=28 \mathrm{~A}_{16}$

More number conversions (cont.)

650_{10} to hexadecimal using repeated division method:

```
\(650 / 16=40.625 \rightarrow 0.625 \times 16=10 \rightarrow \mathrm{~A} \leftarrow\) Least significant bit (MSB)
\(40 / 16=2.5 \rightarrow 0.5 \times 16=8 \rightarrow 8\)
\(2 / 16=0.125 \rightarrow 0.125 \times 16=2 \rightarrow 2 \longleftarrow\) Most significant bit (MSB)
Therefore, \(650_{10}=28 \mathrm{~A}_{16}\)
```


Binary coded

- Each decimal digit (0 to 9) is represented by 4 bit binary

Binary	Decimal
0000 =>	0
0001 =>	1
0010 =>	2
0011 =>	3
0100 =>	4
0101 =>	5
0110 =>	6
0111 =>	7
1000 =>	8
1001 =>	9

How to represent 28 in BCD?

$$
=>00101000_{2}
$$

What is 00110010 in BCD?

$$
=>32
$$

What is 32 in binary?

$$
=>100000_{2}
$$

Gray Code

Binary		Decimal		Gray Code	
0000	=>	0	=>	0000	
0001	=>	1	=>	0001	
0010	=>	2	=>	0011	
0011	=>	3	=>	0010	
0100	=>	4	=>	0110	Exhibits a single
0101	=>	5	=>	0111	bit change from
0110	=>	6	=>	0101	bit change from
0111	=>	7	=>	0100	one code word
1000	=>	8	=>	1100	
1001	=>	9	=>	1101	to another
1010	=>	10	=>	1111	
1011	=>	11	=>	1110	
1100	=>	12	=>	1010	
1101	=>	13	=>	1011	
1110	=>	14	=>	1001	
1111	=>	15	=>	1000	

Binary-Gray Code Conversions

- MSB of Gray Code is the same MSB in binary
- From left to right, add each adjacent pair of binary code, discard carry

Therefore, binary 10110 is equivalent to gray code 11101

Gray Code-Binary Conversions

- MSB of binary is the same MSB in Gray Code
- From left to right, add each generated binary code with adjacent Gray Code, discard carry

Therefore, gray code11011 is equivalent to binary 10010

ASCII

- American Standard Code for Information Interchange
- 128 characters, represented by 8-bit binary code with MSB ' 0 '
- The 8-bit code runs from 00_{16} to $7 \mathrm{~F}_{16}$
- The first 32 ASCII characters used for controls such as ESC, new line, space, start of text, etc
- Other characters include letters (upper and lower case), decimal digits, and symbols

ASCII Table

Dec		Ot	Char		Dec		Oct	Html	chr	Dec		Oct	Html	Chr		Hx Oc	Html	
0	0	000	NUL	(null)	32	20	040	6\#32;	Space	64	40	100	\&\#64;	0	96	60140	\&\#96;	
1	1	001	SOH	(start of heading)	33	21	041	\&\#33;	$!$	65	41	101	\&\#65;	A	97	61141	\&\#97;	a
2	2	002	STX	(start of text)	34	22	042	\&\#34;		66	42	102	\&\#66;	B	98	62142	\&\#98;	b
3	3	003	ETX	(end of text)	35	23	043	¢\#35;	\#	67	43	103	\&\#67;	C	99	63143	\&\#99;	c
4	4	004	E0T	(end of transmission)	36	24	044	\&\#36;	¢	68	44	104	\&\#68;	D	100	64144	¢\#100;	; d
5	5	005	ENO	(enquiry)	37	25	045	(\#37;	\%	69	45	105	\&\#69;	E	101	65145	\&\#101;	
6	6	006	ACK	(acknowledge)	38	26	046	*\#38;	*	70	46	106	\&\#70;	F	102	66146	\&\#102;	;
7	7	007	BEL	(bell)	39	27	047	¢\#39;		71	17	107	\&\#71;	G	103	$67 \quad 147$	\&\#103;	
8	8	010	BS	(backspace)	40	28	050	\&\#40;	(72	48	110	\&\#72;	H	104	68150	\&\#104;	h
9	9	011	TAB	(horizontal tab)	41	29	051	¢\#41;)	73	49	111	\&\#73;	I	105	69151	\&\#105;	
10	A	012	LF	(NL line feed, new line)	42	2A	052	¢\#42;		74	4 4A	112	\&\#74;	J	106	6A 152	\&\#106;	
11	B	013	VT	(vertical tab)	43	2B	053	\&\#43;	+	75	$5 \mathrm{4B}$	113	\&\#75;	K	107	6B 153	\&\#107;	
12	C	014	FF	(NP form feed, new page)	44	2C	054	\&\#44;		76	4C	114	\&\#76;	L	108	6 C 154	\&\#108;	
13	D	015	CR	(carriage return)	45	2D	055	¢\#45;		77	4D	115	\&\#77;	M	109	6D 155	\&\#109;	
14	E	016	50	(shift out)	46	2E	056	\&\#46;		78	4E	116	\&\#78;	N	110	6 E 156	\&\#110;	
15	F	017	SI	(shift in)	47	2 F	057	¢\#47;	7	79	4 F	117	\&\#79;	0	111	6 F 157	\&\#111;	
16	10	020	DLE	(data link escape)	48	30	060	¢\#48;	0	80	50	120	\&\#80;	P	112	70160	\&\#112;	;
17	11	021	DCl	(device control 1)	49	31	061	*\#49;	1	81	51	121	\&\#81;	0	113	71161	\&\#113;	
18	12	022	DC2	(device control 2)	50	32	062	\&\#50;	2	82	52	122	\&\#82;	R	114	72162	\&\#114;	
19	13	023	DC3	(device control 3)	51	33	063	\&\#51;	3	83	53	123	\&\#83;	S	115	73163	\&\#115;	
20	14	024	DC4	(device control 4)	52	34	064	\&\#52;		84	45	124	\&\#84;	T	116	74164	\&\#116;	
21	15	025	NAK	(negative acknowledge)	53	35	065	¢\#53;	5	85	55	125	\&\#85;	U	117	75165	\&\#117;	
22	16	026	SYN	(synchronous idle)	54	36	066	¢\#54;	6	86	56	126	\&\#86;	V	118	76166	\&\#118;	
23	17	027	ETB	(end of trans. block)	55	37	067	\&\#55;	7	87	57	127	\&\#87;	T	119	77167	\&\#119;	;
24	18	030	CAN	(cancel)	56	38	070	\&\#56;	8	88	58	130	\&\#88;	X	120	78170	\&\#120;	
25	19	031	EM	(end of medium)	57	39	071	¢\#57;	9	89	59	131	\&\#89;	Y	121	79171	\&\#121;	
26	1A	032	SUB	(substitute)	58	3A	072	\&\#58;	:	90	5A	132	\&\#90;	Z	122	$7 \mathrm{~A} \quad 172$	\&\#122;	
27	1B	033	ESC	(escape)	59	3B	073	\&\#59;	;	91	1 5B	133	\&\#91;	[123	$7 \mathrm{~B} \quad 173$	\&\#123;	
28	1 C	034	FS	(file separator)	60	3C	074	*\#60;	<	92	5C	134	\&\#92;	,	124	7 C 174	\&\#124;	
29	1D	035	GS	(group separator)	61	3D	075	*\#61;	=	93	3 5D	135	\&\#93;	1	125	7D 175	\&\#125;	;
30	1 E	036	RS	(record separator)	62	3E	076	\&\#62;	$>$	94	4 5E	136	\&\#94;		126	7E 176	\&\#126;	
31	1 F	037	US	(unit separator)	63	3 F	077	\&\#63;	$?$	95	5 F	137	\&\#95;		127	7F 177	\&\#127;	; DEL

Source: www.LookupTables.com
2/18/2012
A.A.H Ab-Rahman, Z.Md-Yusof

ASCII Example

- Find the ASCII equivalent "ab.12" in binary => 0110000101100010001011100011000100110010
- A receiver receives the bit sequence: 504D544B23 ${ }_{16}$
- Find the ASCII characters corresponding the transmitted data
=> PMTK\#

