
68
00

0

1: Embedded Systems

Muhammad Mun’im Ahmad Zabidi (munim@utm.my)

SEE3223 Microprocessors

68
00

0

Microprocessor-Based Systems
•  Aims

–  To review the main elements of a microprocessor system.
•  Intended Learning Outcomes

–  At the end of this module, students should be able to:
•  Define and explain important terms associated with both hardware and

software elements of a microprocessor system
•  Tell the difference between general purpose computing and embedded

computing
•  List down the major components inside a computer & processor
•  Tell the difference between computer, processor, microprocessor and

microcontroller
•  Explain instruction execution cycles of a generic microprocesso

1-2

68
00

0

SEE3223 Microprocessor Systems
•  What’s in this course:

–  Assembly language programming
–  Microprocessor concepts
–  Hardware interfacing

•  Pre-Requisites
–  Number representation, coding, registers, state machines
–  Realisation of simple logic circuits
–  Integrated circuit technologies
–  Designing with MSI components
–  Flip-Flops
–  Counters and sequential MSI components
–  Register transfer logic

1-3

68
00

0

Reading List
Required Text:

•  Muhammad Mun’im Ahmad Zabidi (2011), Sistem Terbenam dengan

Mikropemproses 68000, Penerbit UTM Press.

Recommended Readings:

•  Antonakos, J.L. (2003), The 68000 Microprocessor: Hardware and

Software Principles and Applications, 5th Ed., Prentice Hall.

•  Clements A.(1997), Microprocessor Systems Design: 68000 Software,
Hardware and Intefacing, 3rd Ed., PWS Kent Publishing.

•  Walter A. Triebel, Avtar Singh (1991), The 68000 and 68020
Microprocessors, Prentice Hall.

1-4

68
00

0

Computing Systems
•  Rapid pace of information technology is due to introduction of

new microprocessors
•  Most of us think of desktop computers

–  PC
–  Laptop
–  Mainframe
–  Server

•  Maybe at most handheld computer (PDA)
•  In this course, we will look at another type of computing

system which is far more common that you ever imagined

1-5

68
00

0

Computer Classifications
•  Classification of computers:

–  Servers:
•  Big, expensive, available 24x7 (read “24 by 7” or 24 hours a day, 7

days a week. Mainframes are old servers made by IBM.
–  Desktops:

•  computers on your desk
–  Laptops:

•  computers you carry in your bag
–  PDA (personal digital assistants):

•  computers you carry in your pocket
–  Embedded systems:

•  computers that don’t look like computers!

•  An embedded system is a type of computer
1-6

68
00

0

Embedded Systems
•  Account for >99% of new microprocessors

–  Consumer electronics
–  Vehicle control systems
–  Medical equipment
–  Sensor networks

•  Desktop processors (Intel Core, AMD Athlon, PowerPC, etc)
combined is only 1%

1-7

68
00

0

Embedded Systems
•  Simple definition: Computing systems embedded within

electronic devices
•  Nearly any computing system other than a desktop computer
•  Designed to perform a specific function
•  Billions of units produced yearly, versus millions of desktop

units
•  Take advantage of application characteristics to optimize the

design
•  As electrical or electronics engineers, you may be required to

design an embedded system
–  But you BUY (not design) a general purpose computer

1-8

68
00

0

General Purpose vs Embedded Systems
General Purpose Embedded
Intended to run a fully general set
of applications

Runs a few applications often
known at design time

End-user programmable Not end-user programmable
Faster is always better Operates in fixed run-time

constraints, additional performance
may not be useful/valuable

Differentiating features:
•  Speed (need not be fully

predictable)
•  Software compatibility
•  Cost (eg RM3k vs RM5k per

laptop)

Differentiating features:
•  Power
•  Cost (eg RM2 vs RM2.50)
•  Size
•  Speed (must be predictable)

1-9

68
00

0

A Computer System – Simplified View

1-10

Control bus

Address bus

Data bus

An embedded system also has the same
structure but at a smaller size

CPU

Memory

Input/Output

68
00

0

Microprocessor – Basic concept

1-11

Microprocessor, by-itself, completely useless – must have external peripherals to
Interact with outside world

CPU

Control bus

16-bit / 32-bit / 64-bit wide

Timing signals, ready signals,
interrupts etc

bidirectional
8-bit / 16-bit / 32-bit / 128-bit

Data bus

Address bus

68
00

0

Microprocessor – Basic Concept

1-12

Boot
ROM

Used at
startup

Instruction
(program)

ROM

Data
RAM

Trans-
ducers

Keyboard
Screen
UART

Parallel
interface

etc

Microprocessor, by-itself, completely useless – must have external peripherals to
Interact with outside world

CPU

Address

Control

Data

68
00

0

“Glue Logic”

1-13

Decode Logic

CS* – chip select

Every external device needs some “glue logic” to interface with the processor.

External
Device

Address

Control

Data

Device itself
with all

necessary
internal logic

Address

Control

Data

  Address strobe
  Data strobe
  Read/write control
  Output Enable
  Interrupt signals
  etc

We’ll study all the control signals when we study microprocessor hardware.

Other Glue Logic

68
00

0

Microcontroller – Basic concept

1-14

Microcontroller - put a limited amount of most commonly used resources inside one chip

Boot
ROM

Program
ROM

Data
RAM

Trans-
ducers Some I/O

CPU

Address

Control

Data

68
00

0

Microprocessor vs Microcontroller
•  Microprocessor:

–  A chip that contains only the
processor

–  Need other chips to make a
working system

–  More flexible
–  Can have very few I/O or many I/O

devices using the same processor
chip

1-15

•  Microcontroller:
–  A chip that contains all the

components of a computer –
processor, memory and input/
output

–  Less flexibility
–  Less component count in system
–  Less powerful

No matter what is the system size, the most important component is still the processor.

68
00

0

Other Processors in Embedded Systems
•  Embedded Controllers:

–  More powerful (32 bits) than microcontrollers (8 bits)
–  Normally contains only processor and input/output, memory is external

•  Digital Signal Processors:
–  Embedded processors optimized for digital signal processing
–  Commonly found in handphones, modems, communications systems

•  Graphics Processors:
–  Very powerful processors found in graphics cards of workstations

•  Programmable Logic Controllers:
–  Microprocessor boards usually found in industrial applications

1-16

68
00

0

To design a µP System, we must know…
•  Fundamentals:

–  What’s inside a computer
–  What’s inside a processor

•  Programming:
–  What happens in the processor when it’s running a program
–  What do we need to write a program
–  How to create a program
–  How to run a program
–  How to fix a program error

•  Hardware design:
–  Timing diagrams
–  Interfacing with other chips

1-17

68
00

0

Software
•  Computer software

–  Computer programs are known as software

•  Program:
–  Sequence of instructions that perform a task
–  Think of it like playing music

•  Instruction:
–  The simplest operation performed by the processor
–  Think of it as a note coming from a musical instrument

•  How the computer works:
–  Fetch an instruction from memory
–  Decode the instruction
–  Execute the instruction
–  Repeat 1-18

68
00

0

Machine & Assembly Language
•  Machine instruction

–  A sequence of binary digits which can be executed by the processor, e.g. 0001
1011.

–  Hard to understand for human being
•  Assembly language

–  An assembly program consists of assembly instructions
–  An assembly instruction is a mnemonic representation of a machine

instruction e.g. MUL may stand for “multiply”
–  Assembly programs must be translated into object code before it can be

executed -- translated by an assembler.
–  Two types of assemblers: cross assembler and native assembler.
–  Cross assembler runs on one computer and generates machine instructions

that will be executed by another computer that has different instruction set
–  Native assembler runs and generates instructions for the same computer.
–  Drawbacks of assembly programs:

•  Dependent on hardware organisation, difficult to understand long programs, low
programmer productivity

1-19

68
00

0

High-level language (HLL)
•  High-Level Language

–  Syntax of a high-level language is similar to English
–  A translator is required to translate the program written in a high-level

language into object code -- done by a compiler.
–  There are cross compilers that run on one one computer but translate

programs into machine instructions to be executed on a computer with
a different instruction set.

–  Main drawback is slower execution speed of the machine code
obtained after compiling an HLL program.

–  However, C language has been extensively used in microcontroller
programming in industry.

1-20

68
00

0

Central Processing Unit (CPU)

1-21

Unit kawalan

ALU

Menyimpan
maklumat

Mengawal

Memproses

Daftar

Bas kawalan

B
as

 d
al

am
an

Bas data

Bas alamat

68
00

0

Important Registers
•  Program Counter (PC)

–  Keeps track of program execution
–  Address of next instruction to read from memory
–  May have auto-increment feature or use ALU
–  Some manufacturers call this register the Instruction Pointer (IP)

•  Instruction Register (IR)
–  Invisible to programmer
–  Contains current instruction
–  Includes ALU operation and address of operand

•  Data Registers
–  Stores data. For simple µP, it may be called accumulators.

•  Address Registers
–  Stores address of data. For special areas of memory, it may be called

index registers, stack pointers or base registers.
1-22

68
00

0

The ALU
•  Performs arithmetic & logic operations on several

bits simultaneously
•  The number of bits is a most important factor

determining the capabilities of the processor
•  Typical sizes:

–  4 bits (very small microcontroller: remote controllers)
–  8 bits (microcontrollers: 68HC05, 8051, PIC)
–  16 bits (low-end microprocessors: Intel 8086)
–  32 bits (most popular size today: Intel Core, PowerPC,

68000, ARM, MIPS)
–  64 bits (servers: IBM POWER & PowerPC G5, AMD

Opteron, Intel Itanium)
1-23

68
00

0

Memory
•  Looks like a very long list.
•  Each row is called a memory

location and has a unique address
•  Each location stores the same

number of bits, usually multiples of
8 bit (bytes)

•  Number of addresses 2N (where N
is an integer).

1-24

0
1
2
3

2N-1

Satu sel

Alamat kedudukan

Satu kedudukan

68
00

0

Memory Devices
•  Read-Only Memory

–  Non-volatile memory: contents is retained even without power
–  In embedded systems, used to store application programs and test

routines
–  Contents can be set by fixing it during manufacturing or “burning” it

using a programming device
–  Common types include MROM, PROM, EPROM and flash memory
–  Erasable types can only be rewritten a fixed number of times

•  Random Access Memory
–  Contents lost without power (volatile memory)
–  Used to store temporary data. In embedded system, very little RAM is

required. Some systems don’t even have RAM at all!
–  No limit to number of writes the device can handle
–  Fast writes (unlike EPROM/EEPROM)
–  Two major types are SRAM and DRAM 1-25

68
00

0

Memory Space and Address Bus
•  Smallest transferable amount of data from memory to CPU

(and vice versa) is one byte.
•  Each byte has a unique location or address.
•  The address of each byte is written in hexadecimal (hex).

–  For 68000, the prefix ‘$’ means a hex value.
•  The range of addresses accessible by the processor is the

memory space.
–  Limited by the size of the address bus

•  From the programmer’s point of view, 68000 address bus is
24 bits wide.
–  Memory space is 0 to 224-1 (16777216 or 16 Megabyte)
–  Written in hex as $000000 to $FFFFFF.

1-26

68
00

0

Word size and data bus size
•  Width of data bus determines the amount of data transferable

in one step
•  Original 68000 has a 16 bit data bus

–  Can transfer 1 word or 2 bytes at once
–  A longword requires two transfers

•  Current 68HC000 has a selectable bus width of 8 or 16 bits
–  Selecting 8 bit data bus results in cheaper system but lower

performance
•  The maximum amount of memory for any 68000 system is 16

Mega locations x 1 byte/location = 16 Megabytes
–  Can also be thought of 8 Megawords

1-27

68
00

0

Data & Address Buses

1-28

24-bit address bus

16-bit data bus

0 15

2 24 -1=
8M locations

Data bus 16 bits

Address bus 24 bits

$000000

$FFFFFF

CPU Memory

68
00

0

Memory Read Operation

1-29

Bas alamat

Perintah
BACA

10100000
00110010
01011111
11111111
00000001

11111111

0000
0001
0002
0003
0004

FFFF

0002 Bas data 01011111

68
00

0

Memory Write Operation

1-30

Bas alamat

Perintah
TULIS

10100000
00110010
01011111
11111111
00000001

11111111

0000
0001
0002
0003
0004

FFFF

0003

10000001 Bas data

10000001

68
00

0

Memory Map
•  System memory map

summarizes the memory
locations available to the
programmer

•  Must know the following
before we can write any
program
–  RAM start and end
–  ROM start and end
–  I/O devices

•  Very different from writing a
program in C where we don’t
have to know all this

1-31

The memory map of a
typical system

$000000

$001FFF

Interrupt
vectors

$002000

$01FFFF

ROM

Unused

RAM

I/O devices

$002000

$01FFFF

$FFFC00

$FFFFFF

$FFFBFF

$020000

68
00

0

Fetch-Execute Cycle
•  The processor executes instructions one-by-one according to

the sequence found in memory
•  Everything is controlled by, what else, the control unit in the

CPU.
•  To execute an instruction, the processor must fetch it from

memory.
•  The complete steps the processor takes to execute one

instruction is the instruction cycle or the fetch-execute
cycle

1-32

Fetch Execute

68
00

0

Instruction Cycle Details
•  On program start:

0. Load the program counter (PC) with the address of the first instruction

•  Fetch phase:
1. Read the instruction and put it into the instruction register (IR)
2. Control unit decodes the instruction; updates the PC for the next instruction

•  Execute phase:
3. Find the data required by the instruction.
4. Perform the required operation.
5. Store the results.
6. Repeat from Step 1.

1-33

68
00

0

Instruction Sequencing
•  Example – an instruction to add the contents of two locations

(A and B) and place result in a third register (C)
•  Before you do anything: set PC to point to 1st instruction in

the sequence

1-34

Addr Instructions

12 MOVE A,D0

14 ADD B,D0

16 MOVE D0,C

 …

100  (A) = 4
102 (B) = 5

104 (C)

12

Program Counter (PC)

Instruction Register (IR)

Data Register 0 (D0)

68
00

0

Instruction Sequencing

1-35

Addr Instructions

12 MOVE A,D0

14 ADD B,D0

16 MOVE D0,C

 …

100  (A) = 4
102 (B) = 5

104 (C)

14

Program Counter (PC)

MOVE A,D0

Instruction Register (IR)

4

Data Register 0 (D0)

68
00

0

Instruction Sequencing

1-36

Addr Instructions

12 MOVE A,D0

14 ADD B,D0

16 MOVE D0,C

 …

100  (A) = 4
102 (B) = 5

104 (C)

16

Program Counter (PC)

ADD B,D0

Instruction Register (IR)

9

Data Register 0 (D0)

68
00

0

Instruction Sequencing

1-37

Addr Instructions

12 MOVE A,D0

14 ADD B,D0

16 MOVE D0,C

 …

100  (A) = 4
102 (B) = 5

104 (C) = 9

18

Program Counter (PC)

MOVE D0,C

Instruction Register (IR)

9

Data Register 0 (D0)

68
00

0

Important ProcessorsYou Should Know

1-38

Year Company Device Significance
1971 Intel 4004 1st µP. A 4-bit device.
1974 Intel 8008 1st 8-bit µP.

Motorola 6800 1st 8-bit µP from Motorola.
Texas TMS 1000 First microcontroller. Can operate without support chips.

1978 Intel 8086 1st 16-bit µP.
1979 Motorola 68000 16/32-bit µP : the data bus is 16 bits externally, but 32-bit

internally.
1984 Motorola 68020 Full 32-bit µP derived from 68000. Has modern features

such cache memory, floating-point unit & full support for
modern operating systems.

1985 Intel 80386 32-bit µP from Intel, basically unchanged until Pentium of
today.

1986 ARM ARM1 32-bit RISC chips designed for low-power.
1993 Apple/

Motorola/
IBM

PowerPC 601 A RISC chip from Motorola derived from IBM POWER.
Ended 68k’s use as general purpose computing but the
family continues to live in embedded systems until today.

68
00

0

Selecting a Microprocessor
•  Choose the right one for your application

–  Primary criteria: Cost, Power, Size, Speed
–  Others: package options, integrated peripherals, potential for future

growth
•  Choose one with good software development support

–  development environment - good compiler and debugger availability
–  evaluation boards
–  in-circuit emulators for those with deep pockets
–  Operating system availability

•  Other considerations
–  Code density: affects power consumption, performance and system

cost
–  Hardware availability: make sure you can actually purchase the

microcontroller before designing it in
–  Prior expertise, licensing, etc 1-39

68
00

0

Summary
•  Microprocessors and embedded controllers are a ubiquitous part of life

today
•  Concept of a microprocessor & microcontroller
•  Understand how a µP works
•  Headhunters report that EEs familiar with µC, µP design are in the highest

possible demand
•  Web Resources:

–  How Microprocessors Work:
•  http://computer.howstuffworks.com/microprocessor.htm
•  http://www.intel.com/education/mpworks/
•  http://www.cse.psu.edu/~cg471/03f/hw/pj5/how-micro.html

–  Great Microprocessors of the Past and Present:
•  http://www.sasktelwebsite.net/jbayko/cpu.html

–  Great Moments in Microprocessor History:
•  http://www-128.ibm.com/developerworks/library/pa-microhist.html

1-40

