SEE 3243/4243
 Digital System

Lecturers :
Muhammad Mun'im Ahmad Zabidi
Muhammad Nadzir Marsono
Kamal Khalil
\section*{Week 5: Arithmetic Circuits Part 1}
-Binary Number Representation
Sign \& Magnitude
Ones Complement
Twos Complement
- Networks for Binary Addition
Half Adder
Full Adder
Ripple Adder
Subtractor

Motivation

- Arithmetic circuits are excellent examples of comb. logic design
- Time vs. Space Trade-offs
- Doing things fast requires more logic and thus more space
- Example: carry lookahead logic
- Arithmetic Logic Units
- Critical component of processor datapath

Unsigned Integers

- Smallest representable value: bit
- Bit groups represent information
- Number of bits determine max. combinations of information
- N bits $=2^{\mathrm{N}}$

Number of Bits	Number of values	Machine
4	16	Intel 4004
8	256	8080,6800
16	65536	PDP11, 8086, 68000
32	$\sim 4 \times 10^{9}$	IBM 370, 68020, VAX11/780, IEEE single
48	1×10^{14}	Unisys
64	1.8×10^{19}	Cray, IEEE double

Unsigned Integers

- Value for the bit pattern:

$$
V_{\text {unsigned }}=\sum_{i=0}^{N-1} b_{i} \times 2^{i}
$$

- Example:

$$
10110_{2}=1 \times 2^{4}+0 \times 2^{3}+1 \times 2^{2}+1 \times 2^{1}+0 \times 2^{0}
$$

$$
=22_{10}
$$

- How many numbers can 8-bit represent?
- For N bits, range of values:

$$
0 \text { up to } 2^{N}-1
$$

Representation of Negative Numbers

- Representation of positive numbers same in most systems
- Major differences are in how negative numbers are represented
- Three major schemes:
- sign and magnitude
- ones complement
- twos complement
- Assumptions:
- 4-bit machine word
- 16 different values can be represented
- roughly half are positive, half are negative

Sign and Magnitude

- Easiest to understand
- Leftmost bit (MSB) is sign bit
- 0 means positive
- 1 means negative
- $+18=00010010$
- $-18=10010010$
- All digit strings with leftmost digit $=0$ are positive numbers
- Positive numbers are represented like natural binary numbers
- For a negative number, the magnitude of that number is equal to whatever you get by interpreting all the bits other than the sign bit in the natural way

Sign and Magnitude

- Example for $\mathrm{N}=4$:
- High order bit is sign: $0=$ positive (or zero), $1=$ negative
- Three low order bits is the magnitude: 0 (000) thru 7 (111)
- Number range for n bits $=+/-\left(2^{n-1}-1\right)$
- Two representations for 0 (0000 and 1000)

Sign-and-Magnitude Problems

- Easy for humans to understand, but may not be the best for machine operation efficiency
- Cumbersome addition/subtraction
- Must compare magnitudes to determine sign of result
- Need to check both sign and magnitude in arithmetic
- Two representations of zero (+0 and -0)

Ones' Complement Representation

- Ones' complement defined as

$$
\bar{N}=\left(2^{n}-1\right)-N
$$

- In ones' complement we get the negation of a number by flipping all the bits
- The name ones' complement comes from the fact that we could also get the negation of a number by subtracting each bit from 1
- Complement of a complement generates original number

Ones' Complement Representation

- Ones' complement of +7
- Since $n=4,\left(2^{n}-1\right)=1111$

$$
\bar{N}=\left(2^{n}-1\right)-N
$$

- Ones' complement of -7
simply compute bitwise complement

$$
1001 \text {-> } 0110
$$

Ones' Complement Representation

- Some complexities in addition
- Subtraction implemented by addition \& 1's complement

Still two representations of 0 ! This causes some problems

Two's Complement

- Two's complement defined as

$$
\begin{gathered}
N^{*}=2^{n}-N \text { for } N \neq 0 \\
0 \text { for } N=0
\end{gathered}
$$

- Exception is so result will always have n bits
- Two's complement is just a 1 added to 1's complement
- Complement of a complement generates original number

Twos Complement Representation

- Only one representation for 0
- One more negative number than positive number

Two’s Complement Representation

$$
N^{*}=2^{n}-N
$$

- Two's complement of +7

- Two's complement of -7

Shortcut method:
Twos complement = bitwise complement +1

0111 -> $1000+1$-> 1001 (representation of -7)
1001 -> $0110+1$-> 0111 (representation of 7)

Finding 2's Complement

Complement remaining bits
 to first 1

2's complement
Start here

Table 2-6 Decimal and 4-bit numbers.

Decimal	Two's Complement	Ones' Complement	Signed Magnitude
-8	1000	-	-
-7	1001	1000	1111
-6	1010	1001	1110
-5	1011	1010	1101
-4	1100	1011	1100
-3	1101	1100	1011
-2	1110	1101	1010
-1	1111	1110	1001
0	0000	1111 or 0000	1000 or 0000
1	0001	0001	0001
2	0010	0010	0010
3	0011	0011	0011
4	0100	0100	0100
5	0101	0101	0101
6	0110	0110	0110
7	0111	0111	0111

Range of Numbers

4-bit 2s complement
$\square+7=0111=2^{3}-1$
$\square-8=1000=-2^{3}$

- 8 bit 2s complement
$\square+127=01111111=2^{7}-1$
- $-128=10000000=-2^{7}$
- 16 bit 2 s complement
$\square+32767=01111111111111111=2^{15}-1$
ㅁ $-32768=10000000000000000=-2^{15}$
N bit 2s complement
$\square 011111111 . .11111111=2^{\mathrm{N}-1}-1 \quad$ (largest positive)
$\square 100000000 . .00000000=-2^{\mathrm{N}-1} \quad$ (largest negative)

Conversion Between Lengths, e.g. $8 \rightarrow 16$

- Positive number: add leading zeros
$\begin{array}{lr}-+18= & 00010010 \\ -+18=0000000000010010\end{array}$
- Negative numbers: add leading ones

$$
\begin{array}{lc}
--18 & = \\
--18 & =11111111111101110 \\
-1110
\end{array}
$$

- i.e. pack with msb (sign bit)
called "sign extension"

Addition and Subtraction

- $a-b=$?
- Normal binary addition
- Monitor sign bit of result for overflow
- Take negation of b and add to a
- i.e. $a-b=a+(-b)$
- So we only need addition and complement circuits

Addition and Subtraction : Ones Complement

4	0100	-4	1011
+3	0011	$+(-3)$	1100
7	0111	-7	10111
End around carry			$\longrightarrow 1$

4	0100	-4	1011
$\frac{-3}{1}$	$\frac{1100}{10000}$	+3	$\frac{0011}{-1}$
End around carry	$\square 110$ 0001		

Addition and Subtraction: Twos Comp

- Simpler addition scheme makes twos complement the most common choice for integer number systems within digital systems

Addition and Subtraction: Twos Comp

- Why can the carry-out be ignored?
- Add 2's complement of N to M
- This is $\mathrm{M}-\mathrm{N}=\mathrm{M}+\mathrm{N}^{*}$
- If $M \geq N$, will generate carry
$-M+N^{*}=M+\left(2^{n}-N\right)=M-N+2^{n}$
- Discard carry: just like subtracting 2^{n}
- Result is positive $\mathrm{M}-\mathrm{N}$
- If M < N , no carry

Overflow Conditions

- Add two positive numbers to get a negative number or two negative numbers to get a positive number

Twos Complement Overflow

	Expected	011	Actual
	+5	0101	
+	+3	001	
	+8	1000	-8

Overflow

	Expected	0000	Actual
	+5	0101	
+	+2	0010	
	+7	0111	+7

No Overflow

Overflow when carry in to sign does not equal carry out

Iterative Circuit

- Like a hierarchy, except functional blocks per bit

Adders are a great example of this type of design
Design 1-bit circuit, then expand
Look at
\square Half adder - 2-bit adder, no carry in
Inputs are bits to be added
Outputs: result and possible carry
\square Full adder - includes carry in, really a 3-bit adder

Half Adder

- Simplest adder block is "half adder"
- Not very useful by itself

X	Y	Carry	
0	0	0	
0	1	0	0
1	0	0	1
1	1	1	0

Carry = A B

Sum $=A^{\prime} B+A B^{\prime}$

$$
=A \oplus B
$$

Full Adders

- Basic building block is full adder
- Many full-adders are combined to add more than 1 bits
- Truth table:

\mathbf{X}	\mathbf{Y}	$\mathbf{c}_{\text {in }}$	$\mathbf{c}_{\text {out }}$	\mathbf{S}
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Full Adder

$$
S=X \oplus Y \oplus C_{\text {in }}
$$

$$
\begin{aligned}
C_{\text {out }} & =X Y+X C_{i n}+Y C_{i n} \\
& =X Y+(X+Y) C_{\text {in }}
\end{aligned}
$$

In a multi-stage adder:
\square Variable i indicates stage number.
$\square \mathrm{C}_{\text {in }}$ is carry to i -th stage, also known as C_{i}
$\square \mathrm{C}_{\text {out }}$ is carry to next stage, also known as $\mathrm{C}_{\mathrm{i}+1}$

Full-adder circuit: Straightforward Approach

Full Adder: Alternative Implementation

Cost: 6 Gates, max. 2 inputs per gate, 3 levels of logic Advantage: All gates of 2-input type, easier to do VLSI layout

Implementation with Two Half Adders (and an OR)

Cost: 5 Gates, 3 levels of logic

Fig. 3-27 Logic Diagram of Full Adder

Ripple-Carry Adder

- Straightforward - connect full adders
- Carry-out to carry-in chain
- C_{0} in case this is part of larger chain, maybe just set to zero
- Speed limited by carry chain
- Faster adders eliminate or limit carry chain
- 2-level AND-OR logic ==> 2^{n} product terms
- 3 or 4 levels of logic, carry lookahead

Overflow Detection

If Overflow = 1 , then overflow condition occurs. The output should not be used, i.e. the output is wrong.
Condition is that either $\mathrm{C}_{\mathrm{n}-1}$ or C_{n} is high, but not both ($\mathrm{n}=$ \#stages)

Half Subtractor Circuit

\mathbf{X}	\mathbf{Y}	\mathbf{B}	\mathbf{D}
$\mathbf{0}$	0	0	0
0	1	1	1
1	0	0	1
1	1	0	0

Difference
$D=X^{\prime} Y+X Y^{\prime}=X \oplus Y$
Borrow
$B=X^{\prime} Y$

Full Subtractor Circuit

\mathbf{X}	\mathbf{Y}	$\mathbf{B}_{\text {in }}$	$\mathbf{B}_{\text {out }}$	\mathbf{D}
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Difference
$D=X \oplus Y \oplus B_{\text {in }}$
Borrow out
$B_{\text {out }}=X^{\prime} Y+X^{\prime} B_{\text {in }}+Y B_{\text {in }}$

Multi-Stage Full Subtractor

Subtraction Using Adders

Subtraction is the same as addition of the two's complement.
The two's complement is the bit-by-bit complement plus 1.
Therefore, $X-Y=X+Y^{\prime}+1$.
\square Complement Y inputs to adder, set C_{l} to 1 .

Adder/Subtractor

Use 2:1 multiplexers to choose uncomplemented or complemented inputs

Remember, $\mathrm{A}-\mathrm{B}=\mathrm{A}+(-\mathrm{B})=\mathrm{A}+\overline{\mathrm{B}}+1$
So when Add/Sub $=0, S=A+B$
When Add $/$ Sub $=1, S=A+\bar{B}+1=A-B$

Alternative Design

Fig. 3-31 Adder-Subtractor Circuit

- Output is 2 's complement if $B>A$

