

SEE 3243/4243 Digital System

Lecturers : Muhammad Mun'im Ahmad Zabidi Muhammad Nadzir Marsono Kamal Khalil

Week 5: Arithmetic Circuits Part 1

Binary Number Representation

 Sign & Magnitude
 Ones Complement
 Twos Complement

 Networks for Binary Addition

 Half Adder
 Full Adder
 Ripple Adder
 Subtractor

Motivation

- Arithmetic circuits are excellent examples of comb. logic design
- Time vs. Space Trade-offs
 - Doing things fast requires more logic and thus more space
 - Example: carry lookahead logic
- Arithmetic Logic Units
 - Critical component of processor datapath

Unsigned Integers

- Smallest representable value: bit
- Bit groups represent information
- Number of bits determine max. combinations of information

N bits = 2^{N}	Number of Bits	Number of values	Machine
	4	16	Intel 4004
	8	256	8080, 6800
	16	65536	PDP11, 8086, 68000
	32	~ 4 x 10 ⁹	IBM 370, 68020, VAX11/780, IEEE single
	48	1 x 10 ¹⁴	Unisys
	64	1.8 x 10 ¹⁹	Cray, IEEE double

Unsigned Integers

• Value for the bit pattern:

$$V_{\text{unsigned}} = \sum_{i=0}^{N-1} b_i \times 2^i$$

• Example:

 $10110_2 = 1 \times 2^4 + 0 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 0 \times 2^0$ = 22_{10}

- How many numbers can 8-bit represent?
- For N bits, range of values:

0 up to 2^N - 1

Representation of Negative Numbers

- Representation of positive numbers same in most systems
- Major differences are in how negative numbers are represented
- Three major schemes:
 - sign and magnitude
 - ones complement
 - twos complement
- Assumptions:
 - 4-bit machine word
 - 16 different values can be represented
 - roughly half are positive, half are negative

Sign and Magnitude

- Easiest to understand
- Leftmost bit (MSB) is sign bit
 - 0 means positive
 - 1 means negative
- +18 = **0**0010010
- -18 = **1**0010010
- All digit strings with leftmost digit = 0 are positive numbers
- Positive numbers are represented like natural binary numbers
- For a negative number, the magnitude of that number is equal to whatever you get by interpreting all the bits other than the sign bit in the natural way

Sign and Magnitude

- Example for N=4:
 - High order bit is sign: 0 = positive (or zero), 1 = negative
 - Three low order bits is the magnitude: 0 (000) thru 7 (111)
 - Number range for n bits = $+/-(2^{n-1}-1)$
 - Two representations for 0 (0000 and 1000)

Sign-and-Magnitude Problems

- Easy for humans to understand, but may not be the best for machine operation efficiency
- Cumbersome addition/subtraction
- Must compare magnitudes to determine sign of result
- Need to check both sign and magnitude in arithmetic
- Two representations of zero (+0 and -0)

Ones' Complement Representation

Ones' complement defined as

 $\overline{N} = (2^n - 1) - N$

- In ones' complement we get the negation of a number by flipping all the bits
- The name ones' complement comes from the fact that we could also get the negation of a number by subtracting each bit from 1
- Complement of a complement generates original number

Ones' Complement Representation

- Ones' complement of +7
 - Since n=4, $(2^n 1) = 1111$

$$\overline{N} = (2^n - 1) - N$$

• Ones' complement of -7

Shortcut method:

simply compute bitwise complement

1001 -> 0110

2 ⁿ - 1	1	1	1	1	
Ν	1	0	0	0	(-7)
N	0	1	1	1	(+7)

- Some complexities in addition
- Subtraction implemented by addition & 1's complement
- Still two representations of 0! This causes some problems

Two's Complement

• Two's complement defined as

```
N^* = 2^n - N \text{ for } N \neq 00 \text{ for } N = 0
```

- Exception is so result will always have n bits
- Two's complement is just a 1 added to 1's complement
- Complement of a complement generates original number

Twos Complement Representation

-1 +0 +1 1111 0000 -2 1110 0001 -3 +2 **1101** 0010 like 1's comp except shifted -4 +3 1100 0011 0.100 = +4one position clockwise -5 1011 $1\,100 = -4$ 0100 +41010 0101 -6 +5 1001 0110 **+6** -7 1000 0111 -8 +7

- Only one representation for 0
- One more negative number than positive number

Two's Complement Representation

 $N^* = 2^n - N$

• Two's complement of +7

2 ⁿ	1 0000	
N	0111	(+7)
N*	1001	(-7)

• Two's complement of -7

Shortcut method: Twos complement = bitwise complement + 1

0111 -> 1000 + 1 -> 1001 (representation of -7)

1001 -> 0110 + 1 -> 0111 (representation of 7)

2 ⁿ	1 0000	
Ν	1001	(-7)
N*	0111	(+7)

Finding 2's Complement

Table 2-6 Decimal and 4-bit numbers.

Decimal	Two's Complement	Ones' Complement	Signed Magnitude
-8	1000		
-7	1001	1000	1111
-6	1010	1001	1110
-5	1011	1010	1101
-4	1100	1011	1100
-3	1101	1100	1011
-2	1110	1101	1010
-1	1111	1110	1001
0	0000	1111 or 0000	1000 or 0000
1	0001	0001	0001
2	0010	0010	0010
3	0011	0011	0011
4	0100	0100	0100
5	0101	0101	0101
6	0110	0110	0110
7	0111	0111	0111
1 2 3 4 5 6 7	0001 0010 0011 0100 0101 0110 0111	0001 0010 0011 0100 0101 0110 0111	0001 0010 0011 0100 0101 0110 0111

Range of Numbers

- 4-bit 2s complement
 - \Box +7 = 0111 = 2³-1
 - \Box -8 = 1000 = -2³
- 8 bit 2s complement
 - \Box +127 = 01111111 = 2⁷ -1
 - \Box -128 = 1000000 = -2⁷
- 16 bit 2s complement
 - $\Box +32767 = 011111111 11111111 = 2^{15} 1$
 - $\Box -32768 = 10000000 \ 0000000 = -2^{15}$
- N bit 2s complement
 - $\Box 011111111.1111111 = 2^{N-1} 1$
 - (largest positive)
 - $\Box \ 10000000.0000000 = -2^{N-1}$
- (largest negative)

Conversion Between Lengths, e.g. $8 \rightarrow 16$

- Positive number: add leading zeros
 - -+18 = 00010010
 - -+18 = 00000000 00010010
- Negative numbers: add leading ones
- i.e. pack with msb (sign bit)

Addition and Subtraction

- a b = ?
- Normal binary addition
- Monitor sign bit of result for overflow
- Take negation of b and add to a

-i.e. a - b = a + (-b)

• So we only need addition and complement circuits

Addition and Subtraction : Ones Complement

4	0100	-4	1011
+ 3	0011	+ <u>(-3)</u>	1100
7	0111	-7	10111
	End a	round carry	<u> </u>
			1000

4	0100	-4	1011
<u>- 3</u>	1100	+ 3	0011
1	10000	-1	1110
End around carry	<u> </u>		
	0001		

Addition and Subtraction : Twos Comp

4	0100	-4	1100	
+ 3	0011	+ <u>(-3)</u>	1101	
7	0111	-7	11001	If carry-in to sign = carry-out then ignore carry
4	0100	-4	1100	
- 3	1101	+ 3	0011	
1	10001	-1	1111	
	L	 If carry-in to sig carry-out then ignore carry 	jn =	

• Simpler addition scheme makes twos complement the most common choice for integer number systems within digital systems

Addition and Subtraction : Twos Comp

- Why can the carry-out be ignored?
- Add 2's complement of N to M
 This is M N = M + N*
- If $M \ge N$, will generate carry
 - $-M + N^* = M + (2^n N) = M N + 2^n$
 - Discard carry: just like subtracting 2ⁿ
 - Result is positive M N
- If M < N, no carry

Overflow Conditions

• Add two positive numbers to get a negative number or two negative numbers to get a positive number

Twos Complement Overflow

No Overflow

NO Overnow

Overflow when carry in to sign does not equal carry out

Iterative Circuit

• Like a hierarchy, except functional blocks per bit

- Adders are a great example of this type of design
- Design 1-bit circuit, then expand
- Look at
 - □ Half adder 2-bit adder, no carry in
 - Inputs are bits to be added
 - Outputs: result and possible carry
 - □ Full adder includes carry in, really a 3-bit adder

Half Adder

- Simplest adder block is "half adder"
 - Not very useful by itself

Full Adders

- Basic building block is full adder
- Many full-adders are combined to add more than
 1 bits x y c_{in} | c_{out} s
- Truth table:

Χ	Y	C _{in}	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Full Adder

- In a multi-stage adder:
 - □ Variable i indicates stage number.
 - \Box C_{in} is carry to i-th stage, also known as C_i
 - \Box C_{out} is carry to next stage, also known as C_{i+1}

Full-adder circuit: Straightforward Approach

ocw.utm.my

Full Adder: Alternative Implementation

- Cost: 6 Gates, max. 2 inputs per gate, 3 levels of logic
- Advantage: All gates of 2-input type, easier to do VLSI layout

Implementation with Two Half Adders (and an OR)

Cost: 5 Gates, 3 levels of logic

Fig. 3-27 Logic Diagram of Full Adder

- Straightforward connect full adders
- Carry-out to carry-in chain
 - C_0 in case this is part of larger chain, maybe just set to zero
- Speed limited by carry chain
- Faster adders eliminate or limit carry chain
 - 2-level AND-OR logic ==> 2ⁿ product terms
 - 3 or 4 levels of logic, carry lookahead

Overflow Detection

- If Overflow = 1, then overflow condition occurs. The output should not be used, i.e. the output is wrong.
- Condition is that either C_{n-1} or C_n is high, but not both (n = #stages)

Half Subtractor Circuit

X	Υ	В	D
0	0	0	0
0	1	1	1
1	0	0	1
1	1	0	0

Difference $D = X'Y + XY' = X \oplus Y$

Borrow B = X'Y

Full Subtractor Circuit

X	Υ	B _{in}	B _{out}	D
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

 $D = X \oplus Y \oplus B_{in}$

Borrow out $B_{out} = X'Y + X'B_{in} + YB_{in}$

5-35

Multi-Stage Full Subtractor

Subtraction Using Adders

- Subtraction is the same as addition of the two's complement.
- The two's complement is the bit-by-bit complement plus 1.
- Therefore, X Y = X + Y' + 1.

 \Box Complement Y inputs to adder, set C_I to 1.

Adder/Subtractor

uncomplemented or complemented inputs

Remember, A - B = A + (-B) = A + \overline{B} + 1 So when Add/Sub = 0, S = A + B When Add/Sub = 1, S = A + \overline{B} + 1 = A - B

Alternative Design

5

• Output is 2's complement if B > A