
SEE 3243/4243

Digital System

Week 5: Arithmetic Circuits Part 1

Lecturers :
Muhammad Mun'im Ahmad Zabidi
Muhammad Nadzir Marsono
Kamal Khalil

Week 5: Arithmetic Circuits Part 1

�Binary Number Representation

Sign & Magnitude

Ones Complement

Twos Complement

�Networks for Binary Addition

Half Adder

Full Adder

Ripple Adder

Subtractor

Motivation

• Arithmetic circuits are excellent examples of

comb. logic design

• Time vs. Space Trade-offs

– Doing things fast requires more logic and thus more

spacespace

– Example: carry lookahead logic

• Arithmetic Logic Units

– Critical component of processor datapath

5-2

Unsigned Integers
• Smallest representable value: bit

• Bit groups represent information

• Number of bits determine max. combinations of

information

N bits = 2 values• N bits = 2N values

5-3

Number
of Bits

Number
of values

Machine

4 16 Intel 4004

8 256 8080, 6800

16 65536 PDP11, 8086, 68000

32 ~ 4 x 109 IBM 370, 68020,
VAX11/780, IEEE single

48 1 x 1014 Unisys

64 1.8 x 1019 Cray, IEEE double

Unsigned Integers
• Value for the bit pattern:

• Example:

Vunsigned = bi

i=0

N−1

∑ × 2 i

Example:

101102 = 1 x 24 + 0 x 23 + 1 x 22 + 1 x 21 + 0 x 20

= 2210

• How many numbers can 8-bit represent?

• For N bits, range of values:

0 up to 2N - 1
5-4

Representation of Negative Numbers
• Representation of positive numbers same in most systems

• Major differences are in how negative numbers are represented

• Three major schemes:

– sign and magnitude

– ones complement

– twos complement– twos complement

• Assumptions:

– 4-bit machine word

– 16 different values can be represented

– roughly half are positive, half are negative

5-5

Sign and Magnitude
• Easiest to understand

• Leftmost bit (MSB) is sign bit

– 0 means positive

– 1 means negative

• +18 = 00010010

• -18 = 10010010• -18 = 10010010

• All digit strings with leftmost digit = 0 are positive numbers

• Positive numbers are represented like natural binary numbers

• For a negative number, the magnitude of that number is equal to

whatever you get by interpreting all the bits other than the sign bit

in the natural way

5-6

Sign and Magnitude

0000

0011

1011

1111
1110

1101

1100

1010 0101

0100

0010

0001

+0
+1

+2

+3

+4

+5-2

-3

-4

-5

-6

-7

0 100 = + 4

1 100 = - 4

+

-

• Example for N=4:

– High order bit is sign: 0 = positive (or zero), 1 = negative

– Three low order bits is the magnitude: 0 (000) thru 7 (111)

– Number range for n bits = +/-(2n-1-1)

– Two representations for 0 (0000 and 1000)

5-7

0111

1010

1001

1000
0110

0101 +5

+6

+7-0

-1

-2 -

Sign-and-Magnitude Problems
• Easy for humans to understand, but may not be

the best for machine operation efficiency

• Cumbersome addition/subtraction

• Must compare magnitudes to determine sign of

result result

• Need to check both sign and magnitude in

arithmetic

• Two representations of zero (+0 and -0)

5-8

Ones’ Complement Representation
• Ones’ complement defined as

• In ones’ complement we get the negation of a

number by flipping all the bits

The name ones’ complement comes from the fact

N = (2n – 1) - N

• The name ones’ complement comes from the fact

that we could also get the negation of a number

by subtracting each bit from 1

• Complement of a complement generates original

number

5-9

Ones’ Complement Representation
• Ones’ complement of +7

– Since n=4, (2n – 1) = 1111

2n - 1 1 1 1 1

N 0 1 1 1 (+7)

N 1 0 0 0 (-7)

N = (2n – 1) - N

• Ones’ complement of -7

5-10

Shortcut method:

simply compute bitwise complement

1001 -> 0110

2n - 1 1 1 1 1

N 1 0 0 0 (-7)

N 0 1 1 1 (+7)

Ones’ Complement Representation
0000

0011

1011

1111
1110

1101

1100

1010 0101

0100

0010

0001

+0
+1

+2

+3

+4

+5-5

-4

-3

-2

-1

-0

0 100 = + 4

1 011 = - 4

+

-

N = (2n – 1) - N

5-11

0111

1001

1000
0110

0101 +5

+6

+7-7

-6

-5 -

� Some complexities in addition
� Subtraction implemented by addition & 1's complement
� Still two representations of 0! This causes some problems

Two’s Complement
• Two’s complement defined as

N* = 2n – N for N ≠ 0

0 for N = 0

• Exception is so result will always have n bits

• Two’s complement is just a 1 added to 1’s

complement

• Complement of a complement generates original

number
5-12

Twos Complement Representation
0000

0011

1011

1111
1110

1101

1100

1010 0101

0100

0010

0001

+0
+1

+2

+3

+4

+5-6

-5

-4

-3

-2

-1

0 100 = + 4

1 100 = - 4

+

-

like 1's comp
except shifted
one position
clockwise

5-13

0111

1010

1001

1000
0110

0101 +5

+6

+7-8

-7

-6 -

� Only one representation for 0
� One more negative number than positive number

Two’s Complement Representation

• Two’s complement of +7

N* = 2n - N

2n 1 0000

N 0111 (+7)

N* 1001 (-7)

• Two’s complement of -7

5-14

Shortcut method:
Twos complement = bitwise complement + 1

0111 -> 1000 + 1 -> 1001 (representation of -7)

1001 -> 0110 + 1 -> 0111 (representation of 7)

2n 1 0000

N 1001 (-7)

N* 0111 (+7)

Finding 2’s Complement

Copy all bits
to first 1

Complement
remaining bits

0 1 0 1 1 0 0 0

001 00101

5-15

2’s complement

001 00101

Start here

5-16

Range of Numbers
� 4-bit 2s complement

� +7 = 0111 = 23-1
� -8 = 1000 = -23

� 8 bit 2s complement
� +127 = 01111111 = 27 -1
� -128 = 10000000 = -27

5-17

� -128 = 10000000 = -2

� 16 bit 2s complement
� +32767 = 011111111 11111111 = 215 - 1
� -32768 = 100000000 00000000 = -215

� N bit 2s complement
� 011111111..11111111 = 2N-1 – 1 (largest positive)
� 100000000..00000000 = -2N-1 (largest negative)

Conversion Between Lengths, e.g. 8 � 16
• Positive number: add leading zeros

– +18 = 00010010

– +18 = 00000000 00010010

• Negative numbers: add leading ones

– -18 = 11101110– -18 = 11101110

– -18 = 11111111 11101110

• i.e. pack with msb (sign bit)

5-18

called “sign
extension”

Addition and Subtraction

• a – b = ?

• Normal binary addition

• Monitor sign bit of result for overflow

• Take negation of b and add to a

– i.e. a – b = a + (– b)

• So we only need addition and complement circuits

5-19

Addition and Subtraction : Ones Complement

4

+ 3

7

0100

0011

0111

-4

+ (-3)

-7

1011

1100

10111

1

1000

End around carry

5-20

1000

4

- 3

1

0100

1100

10000

1

0001

-4

+ 3

-1

1011

0011

1110

End around carry

Addition and Subtraction : Twos Comp
4

+ 3

7

0100

0011

0111

-4

+ (-3)

-7

1100

1101

11001

4 0100 -4 1100

If carry-in to sign =
carry-out then
ignore carry

• Simpler addition scheme makes twos complement the most common choice for integer

number systems within digital systems

5-21

4

- 3

1

0100

1101

10001

-4

+ 3

-1

1100

0011

1111
If carry-in to sign =
carry-out then
ignore carry

Addition and Subtraction : Twos Comp

• Why can the carry-out be ignored?

• Add 2’s complement of N to M

– This is M - N = M + N*– This is M - N = M + N*

• If M ≥ N, will generate carry

– M + N* = M + (2n – N) = M – N + 2n

– Discard carry: just like subtracting 2n

– Result is positive M - N

• If M < N, no carry

Overflow Conditions
• Add two positive numbers to get a negative number

or two negative numbers to get a positive number

0000

0001

0010

1100

1101

1110

1111

+0

+1

+2

+3
-4

-3

-2

-1

0000

0001

00101101

1110

1111

+0

+1

+2

+3
-4

-3

-2

-1

5-23

5 + 3 = -8 -7 - 2 = +7

0011

1000

0101

0110

0100

1001

1010

1011

1100

0111

+3

+4

+5

+6

+7-8

-7

-6

-5

-4
0011

1000

0101

0110

0100

1001

1010

1011

1100

0111

+3

+4

+5

+6

+7-8

-7

-6

-5

-4

Twos Complement Overflow

Overflow

Expected 0 1 1 1 Actual

+5 0 1 0 1

+ +3 0 0 1 1

+8 1 0 0 0 -8

Expected 1 0 0 0 Actual

-7 1 0 0 1

+ -2 1 1 1 0

-9 0 1 1 1 +7

Overflow

5-24

Overflow when carry in to sign does not equal carry out

Expected 0 0 0 0 Actual

+5 0 1 0 1

+ +2 0 0 1 0

+7 0 1 1 1 +7

No Overflow No Overflow

Expected 1 1 1 1 Actual

-3 1 1 0 1

+ -5 1 0 1 1

-8 1 0 0 0 +8

Iterative Circuit
• Like a hierarchy, except functional blocks per bit

5-25

� Adders are a great example of this type of design
� Design 1-bit circuit, then expand
� Look at

� Half adder – 2-bit adder, no carry in
� Inputs are bits to be added
� Outputs: result and possible carry

� Full adder – includes carry in, really a 3-bit adder

Half Adder
• Simplest adder block is “half adder”

– Not very useful by itself

X

0
0
1

Y

0
1
0

Carry

0
0
0

Sum

0
1
1

X
Y

0 1

0 0 1

X
Y

0 1

0 0 0

5-26

1
1

0
1

0
1

1
0 1 1 0

Sum = A’ B + A B’

= A ⊕⊕⊕⊕ B

1 10

Carry = A B

Half-adder Schematic

Carry

Sum
X

Y

Full Adders
• Basic building block is full adder

• Many full-adders are combined to add more than

1 bits

• Truth table:

X Y Cin Cout S

0 0 0 0 0

0 0 1 0 1

5-27

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Full Adder

00 01 11 10

0 0 1 0 1

1
1 0 1 0

Cin

XY
00 01 11 10

0 0 0 1 0

1
0 1 1 1

Cin

XY

5-28

S = X ⊕ Y ⊕ Cin

1 0 1 0 0 1 1 1

Cout = X Y + X Cin + Y Cin
= X Y + (X + Y)Cin

� In a multi-stage adder:
� Variable i indicates stage number.
� Cin is carry to i-th stage, also known as Ci

� Cout is carry to next stage, also known as Ci+1

Full-adder circuit: Straightforward Approach

Cost: 6 Gates,
13 inputs

5-29

Full Adder: Alternative Implementation

X
Y

Cin

Sum

� Cost: 6 Gates, max. 2 inputs per gate, 3 levels of logic
� Advantage: All gates of 2-input type, easier to do VLSI layout

5-30

Cout

Cout = X Y + Y Cin + X Cin
= X Y + (X + Y)Cin

X
Y

X
Y

Cin

Implementation with Two Half Adders (and an OR)

X ⊕ Y
X ⊕ Y ⊕ Z

Cost: 5 Gates, 3 levels of logic

5-31

X Y

X ⊕ Y ⊕ Z

Z (X ⊕ Y)

Ripple-Carry Adder

• Straightforward – connect full adders

• Carry-out to carry-in chain

– C0 in case this is part of larger chain, maybe just set to zero

• Speed limited by carry chain

• Faster adders eliminate or limit carry chain

– 2-level AND-OR logic ==> 2n product terms

– 3 or 4 levels of logic, carry lookahead
5-32

Overflow Detection

5-33

� If Overflow = 1, then overflow condition occurs. The output should not be
used, i.e. the output is wrong.

� Condition is that either Cn-1 or Cn is high, but not both (n = #stages)

Overflow

Half Subtractor Circuit

X Y B D

0 0 0 0

0 1 1 1

1 0 0 1

1 1 0 0 X

5-34

1 1 0 0

Difference
D = X’Y + XY' = X ⊕ Y

Borrow
B = X’Y B

D
X

Y

Full Subtractor Circuit
X Y B in Bout D

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 1 0

1 0 0 0 1
Difference

5-35

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

Difference
D = X ⊕ Y ⊕ Bin

Borrow out
Bout = X’Y + X’Bin + YBin

X
Y

Bin

D

Bout

Multi-Stage Full Subtractor

X Y X Y X Y X Y

X 3 Y 3 X 2 Y 2 X 1 Y 1 X 0 Y 0

5-36

BinBout

D

BinBout

D

BinBout

D

X Y

BinBout

D

D 3 D 2 D 1 D 0

Subtraction Using Adders

X 3 Y 3 X 2 Y 2 X 1 Y 1 X 0 Y 0

� Subtraction is the same as addition of the two’s complement.
� The two’s complement is the bit-by-bit complement plus 1.
� Therefore, X – Y = X + Y’ + 1 .

� Complement Y inputs to adder, set CI to 1.

5-37

A B

CO

S

+ CI

A B

CO

S

+ CI

A B

CO

S

+ CI

A B

CO

S

+ CI 1

S 3 S 2 S 1 S 0

Overflow Less gates compared to purpose-built subtractor!

Adder/Subtractor

A B

CO + CI

A B

CO + CI

A B

CO + CI

A B

CO + CI

0 1

Add/Subtract

A 3 B 3 B 3

0 1

A 2 B 2 B 2

0 1

A 1 B 1 B 1

0 1

A 0 B 0 B 0

Sel Sel Sel Sel

5-38

Remember, A - B = A + (-B) = A + B + 1
So when Add/Sub = 0, S = A + B
When Add/Sub = 1, S = A + B + 1 = A - B

S S S S

S 3 S 2 S 1 S 0

Overflow
Use 2:1 multiplexers to choose
uncomplemented or
complemented inputs

Alternative Design

S low for add,
high for subtract

• Output is 2’s complement if B > A

5-39

Inverts each bit
of B if S is 1

Adds 1 to make
2’s complement

