SEE 3243
 Registers \& Counters

Lecturers :
Muhammad Mun'im Ahmad Zabidi
Muhammad Nadzir Marsono
Kamal Khalil

Week 8

- Storage Registers
- Shift Registers
- Counters
- Design of Synchronous Counters

Registers

- Register is a group of flip-flops/memory elements that work together to store data or instructions and shift a group of bits or a binary word.
- Variations:
- Register file - a few registers, each accessible by a register address. Sort of a small memory array.
- Shift register - temporary circuit able to shift or move the stored word either left or right.
- the bits stored can be moved/shifted from 1 element to another adjacent element.
- all the storage registers are actuated simultaneously by a single input clock/shift pulse.
- Buffer register - a temporary data storage circuit able to store a digital word.
- Sometimes use special names
- accumulators, program counters, index registers, stack pointer, status register, etc.

Multibit registers and latches

Octal (8-bit) Register \& Latch

When EN_L = H, the output is connected back to the input. Must do this to keep old value because the DFF does not have a "no change" input condition

74x670 4x4 Register File with Tri-state Outputs

- The 74×670 device contains 16 D flip-flops organized into four words of four flip-flops each.
- Each register in the register file is called a word and is identified by a unique index or address
- Word contents read or written
- Separate Read and Write Enables (RE, WE)
- Separate Read and Write Address (RA, RB, WA, WB) - binary encodings of one of four registers to be read or written
- Data Input, Q Outputs

- On a read, the selected word is multiplexed to the outputs.
- On a write, data present on D4-D1 inputs are stored in the selected word

Shift Registers

- Register components that shift as well as store
- For handling serial data, such as RS-232 and modem transmission and reception, Ethernet links, SONET, etc.
- Data moves from left to right (or from top to bottom). On every shift pulse, the contents of a given flip-flop are replaced by the contents of the flip-flop to its left. The leftmost device receives its inputs from the rightmost.
- Because flip-flop propagation times far exceed hold times, the values are passed correctly from one stage to the next

Basic Shift Register

(a) Circuit

	In	Q_{1}	Q_{2}	Q_{3}	$\mathrm{Q}_{4}=$ Out
t_{0}	1	0	0	0	0
t_{1}	0	1	0	0	0
t_{2}	1	0	1	0	0
t_{3}	1	1	0	1	0
t_{4}	1	1	1	0	1
t_{5}	0	1	1	1	0
t_{6}	0	0	1	1	1
t_{7}	0	0	0	1	1

(b) A sample sequence

Parallel-to-serial conversion and vice versa

- Serial to parallel
- Use a serial-in, parallel-out shift register

- Parallel to serial

Do both

- Par parallel
-out shift register

ocw.utm.my

"Universal" shift register 74x194

S1	So	Operation
0	0	Hold
0	1	Shift Up
1	0	Shift Down
1	1	Parallel Load
- S1 \& S0 selects which line is connected to D input. - There's 4 possible inputs to each DFF.		

Counters

- A circuit that produces a well-defined output pattern sequence
- 3 Bit Up-counter: 000, 001, 010, 011, 100, 101, 110, 111, 000, ...
- 3 Bit Down-counter: 111, 110, 101, 100, 011, 010, 001, 000, 111, ...
- Binary vs. BCD vs. Gray Code Counters
- The output pattern = state of the counter
- Total number of states = modulus of counter
- Counter with m states $=$ modulus-m counter or mod-m counter
- Counting sequence often shown using a state diagram or state transition diagram
- A counter is a "degenerate" finite state machine (FSM) circuit where the state is the only output more on FSM next week

Asynchronous Binary Counters

- Binary counters = counters whose counting sequence corresponds to binary numbers
- Modulus of a binary counter is 2^{n}, where n is \# flip-flops
- Also known as ripple counter since a change in Q_{i} flip-flop toggles the $\mathrm{Q}_{\mathrm{i}+1}$ flip-flop
- Effect of counting must ripple thru the counter
- Only first FF connected to clock signal
- Rippling affects overall delay between count pulse and when the count stabilizes
- Worst case in $n \times t_{p d}\left(t_{p d}\right.$ is propagation delay of each $\left.F F\right)$
- However, ripple counters are useful as frequency dividers
- Frequency at output of Q_{i+1} flip-flop is half at output of Q_{i}
- Frequency of last FF of n-stage counter is $f_{\text {input }} / 2^{n}$

A 3-bit Asynchronous Up-Counter

 (a) Circuit

Synchronous Counters

- All FFs are triggered simultaneously (in parallel) by clock input pulses.
- All outputs change simultaneously
- Simple counters use TFF or JKFF
- Only LSB FF has its JK inputs permanently at HIGH level.
- JK inputs of the others FFs are driven by some combination of FF outputs.

74×163
 MSI 4-bit

 counter

Inputs					Current State							Next State			
$C L R _L D _E N T$ ENP					$Q D$	$Q C$				Q		QD*	$Q C$ *	QB*	$Q A^{*}$
0	x	x	X	x	x		X		X		X	0	0	0	0
1	0)	x	x	x		x		x		X	D	C	B	A
	1	1	0	x		x	x		x		x	QD	QC	QB	QA
	1	1	x	0		X	x		x		x	QD	QC	QB	QA
	1	1	1	1		0	0		0)	0	0	0	0	1
	1	1	1	1		0	0		0)	1	0	0	1	0
	1	1	1	1		0	0		1		0	0	0	1	1
	1	1	1	1		0	0		1		1	0	1	0	0
	1	1	1	1		0	1		0)	0	0	1	0	1
	1	1	1	1		0	1		0		1	0	1	1	0
	1	1	1	1		0	1		1		0	0	1	1	1
	1	1	1	1		0	1		1		1	1	0	0	0
	1	1	1	1		1	0		0)	0	1	0	0	1
	1	1	1	1		1	0		0		1	1	0	1	0
	1	1	1	1		1	0		1		0	1	0	1	1
	1	1	1	1		1	0		1		1	1	1	0	0
	1	1	1	1		1	1		0		0	1	1	0	1
	1	1	1	1		1	1		0		1	1	1	1	0
	1	1	1	1		1	1		1		0	1	1	1	1
	1	1	1	1		1	1		1		1	0	0	0	0

Free-Running 4-bit '163 Counter

- "divide-by-16" counter

Modified Counting sequence: mod-11 Counter

- Load 0101 (5) after Count $=15$
- $5,6,7,8,9,10,11,12,13,14,15,5$, 6, ...
- Clear after Count $=1010$ (10)
- $0,1,2,3,4,5,6,7,8,9,10,0,1,2,3$, ...

ocw.utm.my

Counting from 3 to
 12

Cascading Counters

- RCO (ripple carry out) is asserted in state 15 , if ENT is asserted.

U1
U2

First stage RCO enables second stage for counting RCO asserted soon after stage enters state 1111
also a function of the T Enable

Downstream stages lag in their 1111 to 0000 transitions

Affects Count period and decoding logic

Ring Counter

- Is a circulating shift register

Johnson
 Counter

"Twisted ring" counter

LFSR Counters

Pseudo-random number generator $2^{n}-1$ states before repeating
Same circuits used in CRC error checking in Ethernet networks, etc.

Design of 3-bit Binary Upcounter

- This procedure can be generalized to implement ANY finite state machine
- Counters are a very simple way to start:
- no decisions on what state to advance to next
- current state is the output

State Transition Diagram for 3-bit binary upcounter

Present State			Next State		
C	B	A	C+	B+	A+
0	0	0	0	0	1
0	0	1	0	1	0
0	1	0	0	1	1
0	1	1	1	0	0
1	0	0	1	0	1
1	0	1	1	1	0
1	1	0	1	1	1
1	1	1	0	0	0

State Transition Table

Design of 3-bit Binary Upcounter

- Let's implement with Toggle Flipflops
- What inputs must be presented to the T FFs to get them to change to the desired state bit?
- This is called "Remapping the Next State Function"

Present State			Next State			Flipflop Inputs		
C	B	A	C+	B+	A+	TC	TB	TA
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	1
0	1	0	0	1	1	0	0	1
0	1	1	1	0	0	1	1	1
1	0	0	1	0	1	0	0	1
1	0	1	1	1	0	0	1	1
1	1	0	1	1	1	0	0	1
1	1	1	0	0	0	1	1	1

Design of 3bit Binary Upcounter

Timing Diagram:

Design of Counter with Complex Count Sequence

Step 1: Derive the State Transition Diagram
Count sequence: 000, 010, 011, 101, 110

Design of Counter with Complex Count Sequence

Step 3: Choose Flipflop Type for Implementation Use Excitation Table to Remap Next State Functions

$$
\begin{aligned}
& T C=A^{\prime} C+A^{\prime}=A \text { xor } C \\
& T B=A+B^{\prime}+C \\
& T A=A^{\prime} B C^{\prime}+B^{\prime} C^{\prime}
\end{aligned}
$$

Counter Design Procedure

Resulting Logic:
5 Gates
13 Input Literals +
Flipflop connections

Timing Waveform:

Name:		200.0 ns		400	Ons		600.	Ons		800	Ons		1.0us		1.2us	
$\pm-$ CLOCK																
-(QA																
-(0) QB																
-(1) QC																
\Longrightarrow State	0		2		,	6		,	5		1	3	,	0		2

Implementation with Different Kinds of FFs

SR Flipflops
Continuing with the $000,010,011,101,110,000, \ldots$ counter example

Implementation with Different Kinds of FFs

SR FFs Continued

$$
\begin{aligned}
& R C=A^{\prime} \\
& S C=A \\
& R B=A B+B C=B(A+C) \\
& S B=B^{\prime} \\
& R A=C \\
& S A=B C^{\prime}
\end{aligned}
$$

Implementation With Different Kinds of FFs

SR FFs
Continued

Resulting Logic Level Implementation:
3 Gates, 11 Input Literals + Flipflop connections

Implementation with Different FF Types

 JK FFsJK Excitation Table

$$
Q+=J Q^{\prime}+K^{\prime} Q
$$

Present State			Next State			Remapped Next State					
C	B	A	C+	B+	A+	JC	KC	JB	KB	JA	KA
0	0	0	0	1	0	0	X	1	X	0	X
0	0	1	X	X	X	X	X	X	X	X	X
0	1	0	0	1	1	0	X	X	0	1	X
0	1	1	1	0	1	1	X	X	1	X	0
1	0	0	X	X	X	X	X	X	X	X	X
1	0	1	1	1	0	X	0	1	X	X	1
1	1	0	0	0	0	X	1	X	1	0	X
1	1	1	X	X	X	X	X	X	X	X	X

Implementation with Different FF Types

JK FFs Continued

$$
\begin{aligned}
& J C=A \\
& K C=A^{\prime} \\
& J B=1 \\
& K B=A+C \\
& J A=B C^{\prime}
\end{aligned}
$$

Implementation with Different FF Types

JK FFs Continued

Resulting Logic Level Implementation:
2 Gates, 10 Input Literals + Flipflop Connections

Implementation with Different FF Types

D FFs:

Simplest Design Procedure:
No remapping needed!
DA $=\mathrm{BC}^{\prime}$
$D B=A^{\prime} C^{\prime}+B^{\prime}$
$D C=A$

Present State			Next State		
C	B	A	C+	B+	A+
0	0	0	0	1	0
0	0	1	X	X	X
0	1	0	0	1	1
0	1	1	1	0	1
1	0	0	X	X	X
1	0	1	1	1	0
1	1	0	0	0	0
1	1	1	X	X	X

Resulting Logic Level Implementation:
3 Gates, 8 Input Literals + Flipflop connections

Avoiding Ambiguous States

- Problem with counter with modulo $<2^{n}$
- At power-up, counter may be in ANY possible state
- Designer must guarantee that it (eventually) enters a valid state
- Especially a problem for counters that validly use a subset of states
- Self-Starting Counters
- Design counter so that even invalid states eventually transition to valid state

Two Self-Starting State Transition Diagrams for the Example Counter

Self-Starting Counters

CB		$0 1 \longdiv { C }$		
0	0	1	0	1
1	$\underline{0}$	0	0	1

Deriving State Transition Table from Don't Care Assignment

(a) A modulo-6 counter with asynchronous clear

(b) Timing diagram

Counter Implementation with Different FF Types

- T FFs well suited for straightforward binary counters
- But yielded worst gate and literal count for this example (coz it's not straightforward!)
- No reason to choose SR over JK FFs: it is a proper subset of JK
- SR FFs don't really exist anyway
- JK FFs yielded lowest gate count
- Tend to yield best choice for packaged logic where gate count is key
- D FFs yield simplest design procedure
- Best literal count
- D storage devices very transistor efficient in VLSI
- Other flipflops most likely implemented using DFF in VLSI/FPGA
- Best choice where area/literal count is the key

