
SEE 3243/4243
FSM Modelling & Systematic Realization I

Lecturers :

Muhammad Mun'im Ahmad Zabidi

Muhammad Nadzir Marsono

Kamal Khalil

Week 9

� Finite State Machine Concept

� Basic Design Procedure

� JASM (Just Another State Machine) Example

� Parity Checker Example

� Counter with Enable Example

� Complex Counter Example

Kamal Khalil

Finite State Machines
• State: collection of state variables containing all information from

past needed to predict future behavior

• Finite state machines (FSMs): circuits that can be in only a fixed

number of possible states

• The counters simple finite state machines.

– State = output– State = output

– No choice of sequence

• More generally, in FSM:

– Next State = function of input and present state

– Outputs = function of input and present state

– More complex behavior than counters.

• Finite state machines perform decision-making logic

9-2

Concept of the State Machine

Computer Hardware = Datapath + Control

• FSM generating
sequences of control
signals

• Instructs datapath what to
do next

Control

9-3

• Registers
• Combinational

Functional
Units (e.g.,
ALU)

• Busses

do next State

Control
Signals

Status
Signals

Datapath Processed
Data

Raw
Data

State Machine Structure
• State memory:

– n FFs to store current states. All FFs are connected to a common

clock signal.

• Next-state logic:

– determine the next state when state changes occur

• Output logic: • Output logic:

– determines the output as a function of current state and input

• There are three models for Finite State Machine (FSM)

– Moore model

– Mealy model

– Synchronous Mealy model

• What are the differences between all these three models?
9-4

Moore Machine

9-5

Moore Machine

Outputs are function solely of the current state

Outputs change synchronously with state changes

Mealy Machine

9-6

Mealy Machine

Outputs depend on state AND inputs

Asynchronous signals: Input change causes an immediate
output change

Moore vs Mealy
• Moore:

– Generally more states required to

solve a given problem

– Easier to understand

– Synchronous output (changes only

with a clock pulse) -- The output is

delayed in a Moore machine. Output

does not occur until the next state

• Mealy:

– Generally same or less states

required

– Slightly more complex to analyze

– Asynchronous output (output can

change any time an input changes)

may lead to false outputs due to

output changing after state changesdoes not occur until the next state

change

– Typically take more gates

– Generally easier clocked (generally

able to clock faster)

– Easier to simulate using Max+Plus II

output changing after state changes

– Generally requires less logic

9-7

Conclusion: Must know both, but learn Moore first

Synchronous Mealy
• Mealy model tend to has glitches in the output.

– This is due to the asynchronous nature of the Mealy machine.

• Glitches are undesirable in real hardware controllers.

– But because Mealy machines encode control in fewer states,

saving on state register flip-flops, it is still desirable to use them.

• This leads to alternative synchronous design styles for Mealy • This leads to alternative synchronous design styles for Mealy

machines.

• Simply stated, the way to construct a synchronous Mealy machine

is to break the direct connection between inputs and outputs by

introducing storage elements.

9-8

Synchronous Mealy Machine
Clock

Combinational
Logic for

Outputs and
Next State

X
Inputs

i Z
Outputs

k

9-9

Combination of best ideas of Moore and Mealy:
Less logic + synchronous output

latched state AND outputs

avoids glitchy outputs!

State Register Clock state
feedback

State Machine Timing
• State Time:

– Time between clocking events

• Clocking event:

– inputs sampled

– outputs, next state computed

• After propagation delay

– outputs stable

State T ime

Clock

Inputs
– outputs stable

– next state entered

• Moore vs Mealy:

– Asynchronous signals take effect immediately

– Synchronous signals take effect at the next clocking event

• Immediate Outputs affect datapath immediately

• Delayed Outputs take effect on next clock edge

– Important for synchronous Mealy

• For set-up/hold time considerations:

– Inputs should be stable before clocking event 9-10

Outputs

Basic Design Approach
• Eight Step Process (or just Six for this Week)

1. Understand the statement of the Specification

2. Draw a state diagram

3. Convert state diagram to state table

4. Optionally, perform state minimization4. Optionally, perform state minimization

5. Perform state assignment

6. Obtain next state and output equations

7. Optionally, choose a flip flop type other than DFF and

derive the flip flop input maps or tables.

8. Implement (Draw circuit realization, enter design &

verify)

Example 1: JASM (Just Another State

Machine)• The specification:

– An idle system is activated when an input, A is given. Then, an output, B is produced

after two interval time or cycles later. Next, the system will be back to the idle state,

waiting for the next triggering input A .

• Step 1: Understand the specs.

– Get a sample input/output relationship. More may be needed later.

• Sample input/output relationship:

A : 001001110

B : 000010010

– Draw a simple block diagram.

JASMA B

JASM State Transition Diagram
• Highlights:

– An oval represents a

condition or state

– The state name and

output is written inside

the state

– An arc or arrow represents

a transition from a state to

S0
[0]

0RESET
state

state name

transition
only if input
is 0

Step 2: Draw
State diagram

Some call it
state transition
diagram (STD)
Choose Moore
or Mealy

a transition from a state to

another state

– An arrow is labeled if a

certain is applied for the

transition to occur

9-13

unconditional
transition

[0]

S1
[0]

S2
[1]

1

state name

state output

state
transition

transition
only if input
is 1

JASM Symbolic State Table
• Step 3: get symbolic state table.

– To proceed to logic design, the state diagram is converted to a state table.

– There are 3 different states denoted by S0, S1 and S2.

– A symbolic state table uses state names, as used in the state diagram.

Present
State

Input Next
State

Output
Comments

A BState StateA B

S0
0 S0

0
Remain in idle state if input does not change

1 S1 Go to next state if input is 1

S1
0 S2

0
Go to next state no matter what is the input.

1 S2

S2
0 S0

1
Go to S0 no matter what is the input.
Output is high in this state.10 S0

9-14

� Step 4: Perform state minimization:
�Not necessary here… too few states already. But will be needed later.

JASM Encoded State Table
• Step 5: Perform state assignment:

– Use of “simple” binary encoding gives us: S0 = 00, S1 = 01 and S2 = 10.

– Must also add in code 11 to take care of don’t cares.

– Here, if we somehow get to state 11, next state & output are don’t cares.

Present
State

Input Next
State

Output

PS PS A NS NS BPS1PS0 A NS1NS0 B

00
0 00

0
1 01

01
0 10

0
1 10

10
0 00

1
1 00

11
0 11

X
1 11

9-15

Alternative State Assignments

NO Simple Gray Johnson One-Hot Almost
One-hot

0 000 000 0000 00000001 0000000
1 001 001 0001 00000010 0000001
2 010 011 0011 00000100 0000010

9-16

2 010 011 0011 00000100 0000010
3 011 010 0111 00001000 0000100
4 100 110 1111 00010000 0001000
5 101 111 1110 00100000 0010000
6 110 101 1100 01000000 0100000
7 111 100 1000 10000000 1000000

� We’ll use simple state assignment for this week.

Get Logic Equations
• Step 6: Solve the next state & output

equations.

Present
State

Input
Next
State

Output

PS1 PS0 A NS1 NS0 B

0 0 0 0 0
0

00 01 11 10

0 0 0 X 0

PS1PS0

A

00 01 11 10

0 0 1 X 0

1 0 1 X 0 NS1 = PS0

PS1PS0

A

0 0 0 0 0
0

0 0 1 0 1

0 1 0 1 0
0

0 1 1 1 0

1 0 0 0 0
1

1 0 1 0 0

1 1 0 X X
X

1 1 1 X X

9-17

0 0 0 X 0

1 1 0 X 0
NS0 =
PS1’•PS0’•A

0 1

0 0 0

1 1 X

PS0

PS1

NS0 = PS1

Moore Model Implementation of JASM

Note: WIRE module has no effect

9-18

Note: WIRE module has no effect
on logic

Example 2: Bit Sequence Detector (BSD)

• The specification:

– An input is used to detect a sequence or a series of inputs, 110. When the specific sequence is

detected, an output high is produced for a cycle. Then, the system will continue detect for the

next sequence inputs.

• Motivation

– The sequence detector circuit has a practical application in code encoding and – The sequence detector circuit has a practical application in code encoding and

decoding such as Huffman Codes

• Step 1: Understand the specs.

– Get a sample input/output relationship.

• Sample input/output relationship:

IN : 1100011011110…

OUT : 0010000100001…

110 BSD State Diagram
• Step 2: Get state diagram

– Start with the expected sequence first

– S0 means 0 bit found, S1 = 1 bit found, and

so on

– In S3, all three bits have been detected and

output becomes 1

– After completing S0-S1-S2-S3 transitions, add

all remaining arrows.

S0
[0]

S1
[0]

0

RESET

1 0

all remaining arrows.

9-20

S2
[0]

S3
[1]

1

0

1

1
0

BSD Symbolic State Transition Table

Present
States

Input Next
States

Output
Comments

IN OUT

S0
0 S0

0
Remain in idle state if start sequence is not detected

1 S1 Go to next state if start sequence is detected

Step 3: Symbolic state table

9-21

S1
0 S0

0
Go back to starting state if wrong sequence

1 S2 Go to next state if correct sequence is detected

S2
0 S3

0
Complete sequence is detected

1 S2 Sequence is not completed yet, wait until ‘0’ appear

S3
0 S0

1
Go back to starting state if start sequence is wrong

1 S1 Go to next sequence if start sequence is correct

Step 4: State table minimization --> not necessary

BSD Encoded State Table
• Step 5: Perform state assignment:

– Use “simple” binary encoding:

• S0 = 00

• S1 = 01

• S2 = 10

• S3 = 11 Present
State

Input
Next
State

Output

PS1 PS0 IN NS1 NS0 OUT

9-22

PS1 PS0 IN NS1 NS0 OUT

0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 0 0 0

0 1 1 1 0 0

1 0 0 1 1 0

1 0 1 1 0 0

1 1 0 0 0 1

1 1 1 0 1 1

BSD Next State & Output Equations

NS1 = PS1•PS0’ +
PS1’•PS0•IN

Present
State

Input
Next
State

Output

PS1 PS0 IN NS1 NS0 OUT

0 0 0 0 0 0

0 0 1 0 1 0

00 01 11 10

0 0 0 0 1

1 0 1 0 1

PS1PS0

IN

00 01 11 10

PS1PS0

IN

Step 6:

9-23

0 1 0 0 0 0

0 1 1 1 0 0

1 0 0 1 1 0

1 0 1 1 0 0

1 1 0 0 0 1

1 1 1 0 1 1

NS0 = PS1’•PS0’•IN +
PS1•PS0’•IN’ +
PS1•PS0•IN

0 0 0 0 1

1 1 0 1 0

IN

0 1

0 0 0

1 0 1

PS0

PS1

B = PS1 PS0

BSD Moore Circuit

Step
(7,) 8:

9-24

Example 3: Odd Parity Checker
• The specification:

– Assert output whenever input bit stream has odd # of 1's

• Step 1: Understand the specs.

– Get a sample input/output relationship.

• A : 0

• B : 1 1 because 0 (even) # of 1’s detected

• A : 01• A : 01

• B : 0 0 because 1 (odd) # of 1’s detected

• A : 011

• B : 1 1 because 2 (even) # of 1’s detected

• A : 0110

• B : 1 …ditto… (same as above)

• A : 01101

• B : 0 0 because 3 (odd) # of 1’s

• A : 011010

• B : 0 …ditto…

9-25

Odd Parity Checker
• Steps 2,3,(4,)5: State Diagram, symbolic state table, (minimization) & encoded state table

Even
[0]

Reset

0

1 1

Present State
Even
Even
Odd
Odd

Input
0
1
0
1

Next State
Even
Odd
Odd
Even

Output
0
0
1
1

Symbolic State Transition Table

9-26

Odd
[1]0

1 1

State
Diagram

Symbolic State Transition Table

Output
0
0
1
1

Next State
0
1
1
0

Input
0
1
0
1

Present State
0
0
1
1

Encoded State Transition Table

Step 6: Next state & Output Equations

NS = PS xor PI; OUT = PS

Odd Parity Checker

D

R

Q

Q

Input

CLK PS/Output

NS T

R

Q

Q

Input

CLK

Output

\Reset

Steps 7 & 8: Implementation (DFF & TFF)

9-27

\Reset

D FF Implementation

\Reset

T FF Implementation

Timing Behavior: Input 1 0 0 1 1 0 1 0 1 1 1 0

Clk

Output

Input 1 0 0 1 1 0 1 0 1 1 1 0

1 1 0 1 0 0 1 1 0 1 1 1

Example 4: Dual-Mode Counter
• A sync. 3 bit counter has a mode control M. When M = 0, the counter counts up in the

binary sequence. When M = 1, the counter advances through the Gray code sequence.

Step 1

• List possible sequences to understand the problem.

– Binary: 000, 001, 010, 011, 100, 101, 110, 111– Binary: 000, 001, 010, 011, 100, 101, 110, 111

– Gray: 000, 001, 011, 010, 110, 111, 101, 100

9-28

Mode Input M
0
0
1
1
1
0
0

Current State
000
001
010
110
111
101
110

Next State (CBA)
001
010
110
111
101
110
111

Dual-Mode Counter

One state for each
output combination
Add appropriate
arcs for the mode
control

Reset
S0

[000]

S1
[001]

S2
[010]

S3

Present State Input
Next
State

C B A M DC DB DA

0 0 0 0 0 0 1

0 0 0 1 0 0 1

0 0 1 0 0 1 0

0 0 1 1 0 1 1

0 1 0 0 0 1 1

0 1 0 1 1 1 0

Step 2

Step 3,4,5

9-29

control
S3

[011]

S4
[100]

S5
[101]

S6
[110]

S7
[111]

0 1 0 1 1 1 0

0 1 1 0 1 0 0

0 1 1 1 0 1 0

1 0 0 0 1 0 1

1 0 0 1 0 0 0

1 0 1 0 1 1 0

1 0 1 1 1 0 0

1 1 0 0 1 1 1

1 1 0 1 1 1 1

1 1 1 0 0 0 0

1 1 1 1 1 0 1

Dual-Mode Counter
00 01 11 10

00

01 1 1

11 1 1 1

10 1 1 1

AM

CB
00 01 11 10

00 1 1

01 1 1 1

11 1 1

10 1

AM

CB
00 01 11 10

00 1 1 1

01 1

11 1 1 1

10 1

AM

CB

9-30

DC = CA’M’ + BA’M +
CAM + CB’A +
C’BAM’

1 1 1

DC = BA’ + C’AM + B’AM’

1

DC = A’M’ + C’B’M +
CBM

10 1

Dual-mode Counter Circuit

9-31

JASM Using Mealy Model
• The specifications (still remember?):

– An idle system is activated when an input, A is given. Then, an output, B is produced

after two interval time or cycles later. Next, the system will be back to the idle state,

waiting for the next triggering input A.

• Step 1: Understand the specs.

– Been there, done that!

– Another view of Mealy Model. Notice: output = f(input,present state)

9-32

N
ex

t
S

ta
te

C
o

m
b

in
at

io
n

al
L

o
g

ic

S
ta

te
R

eg
is

te
r

O
u

tp
u

t
C

o
m

b
in

at
io

n
al

L
o

g
ic

JASM Mealy State Transition Diagram

S0

0/0RESET
state

state name

transition
only if input
is 0

Step 2: Draw
State diagram

Mealy state
diagram is
slightly different
than Moore
Outputs are
associated with

output
associated with
this transition

9-33

S1

S2

state name

state
transition

output of 0
during an
unconditional
transition

Output of 0
triggered by
input of 1

associated with
state transitions
(arcs) instead

of state

1/0

/0

/1

output of 1
during an
unconditional
transition

JASM Symbolic State Table
• Step 3: get symbolic state table.

– Now output is a function of both present state and input.

Present
State

Input Next
State

Output

A B

S0
0 S0 0

1 S1 0

Present
State

Input Next
State

Output

PS1PS0 A NS1NS0 B

0 00

S1
0 S2 0

1 S2 0

S2
0 S0 1

1 S0 1

9-34

00
0 00

0
1 01

01
0 10

0
1 10

10
0 00

1
1 00

11
0 XX

X
1 XX

Step 4: Perform state minimization.
Not necessary here… yet

Step 5: Get encoded state table.

Get Logic Equations
• Step 6: Solve the next state & output

equations. Remember output is a function of

both present state and input.

• Step 6: Skip because we’re using DFF

• Step 7: Enter & simulate in MaxPlus as

exercise

Present
State

Input
Next
State

Output 00 01 11 10

0 0 0 X 0

PS1PS0

A

00 01 11 10

0 0 1 X 0

1 0 1 X 0 NS1 = PS0

PS1PS0

A

NS =

PS0 PS1

PS1 PS0 A NS1 NS0 B

0 0 0 0 0
0

0 0 1 0 1

0 1 0 1 0
0

0 1 1 1 0

1 0 0 0 0
1

1 0 1 0 0

1 1 0 X X
X

1 1 1 X X 9-35

1 1 0 X 0
NS0 =
PS1’•PS0’•A

NS0 = PS1

00 01 11 10

0 0 0 X 1

1 0 0 X 1

PS1PS0

A

Example 2: Bit Sequence Detector (BSD)

• The specification:

– An input is used to detect a sequence or a series of inputs, 110. When the

specific sequence is detected, an output high is produced for a cycle. Then,

the system will continue detect for the next sequence inputs.

• Motivation

– The sequence detector circuit has a practical application in code encoding – The sequence detector circuit has a practical application in code encoding

and decoding such as Huffman Codes

• Step 1: Understand the specs.

– Get a sample input/output relationship.

• Sample input/output relationship:

A : 1100011011110…

B : 0010000100001…

9-36

110 BSD State Diagram
• The specification:

– An input is used to detect a sequence or a

series of inputs, 110. When the specific

sequence is detected, an output high is

produced for a cycle. Then, the system will

continue detect for the next sequence inputs.

• Step 1: Understand the specs.

– Done. We’ve seen this circuit before.

RESET 0/0

Done. We’ve seen this circuit before.

• Step 2: Get state diagram

– Start with the expected sequence first

– S0 means 0 bit found, S1 = 1 bit found, S2

= 2 bits found

– If all the third bit is detected (110

sequence completed) while in S2, reset

(go to S0) while at the same time

outputting a 1

9-37

S0

S1S2

0/0

1/0

1/0 1/0

0/1

BSD Symbolic State Transition Table

Present
States

Input Next
States

Output
Comments

A B

S0
0 S0 0 Remain in idle state if start sequence is not detected

1 S1 0 Go to next state if first bit is detected

Step 3: Symbolic state table

9-38

S1
0 S0 0 Go back to starting state if wrong sequence

1 S2 0 Go to next state if second bit is detected

S2

0 S0 1 Complete sequence is detected, reset & output 1

1 S2 0 Sequence is not completed yet, wait until ‘0’
appears

Step 4: State table minimization --> not necessary

BSD Encoded State Table
• Step 5: Perform state assignment:

– Use “simple” binary encoding:

• S0 = 00

• S1 = 01

• S2 = 10

Present
State

Input
Next
State

Output

PS1 PS0 A NS1 NS0 B

9-39

PS1 PS0 A NS1 NS0 B

0 0 0 0 0 0

0 0 1 0 1 0

0 1 0 0 0 0

0 1 1 1 0 0

1 0 0 0 0 1

1 0 1 1 0 0

1 1 0 X X X

1 1 1 X X X

BSD Next State & Output Equations

NS1 = PS1•A + PS0•A

00 01 11 10

0 0 0 X 0

1 0 1 X 1

PS1PS0

A

00 01 11 10

PS1PS0

A

Step 6:

Present
State

Input
Next
State

Output

PS1 PS0 A NS1 NS0 B

0 0 0 0 0 0

0 0 1 0 1 0

9-40

NS0 = PS1’•PS0’•A

0 0 0 X 0

1 1 0 X 0

0 0 1 0 1 0

0 1 0 0 0 0

0 1 1 1 0 0

1 0 0 0 0 1

1 0 1 1 0 0

1 1 0 X X X

1 1 1 X X X

00 01 11 10

0 0 0 X 1

1 0 0 X 0

PS1PS0

B = PS1•A’

A

Simpler logic compared to Moore version!
Step7 & 8 : Circuit diagram left as an
exercise…

