

SEE 3243 Digital System

Lecturers :

Muhammad Mun'im Ahmad Zabidi

Muhammad Nadzir Marsono

OPENCOURSEWARE

Kamal Khalil

Week 7: Sequential Circuits & Flip-Flops —

- Basic Latch
- Gated SR & D Latches
- D, T & JK Flip-Flops
- Metastability

ocw.utm.my

innovative • entrepreneurial • global

Sequential Circuits

- Combinational output depends only on the input.
 - Do not have memory
 - Cannot store state
- Sequential output depends on input and past behavior.

Sequential Circuits Types

- Synchronous
 - State changes synchronized by one or more clocks
 - Easier to analyze because can factor out gate delays
 - Set clock so changes allowed to occur before next clock pulse
- Asynchronous
 - Changes occur inde
 - Potentially faster
 - Harder to analyze

Simple Memory Elements

A simple memory element: feedback will hold value

A memory element with NOR gates: Use Set/Reset to change stored value

SR Latch

- Basic storage made from gates
- Rearrangement of memory element from previous slide!

S	R	Q(t+1)	Function			
0	0	Q(t)	Hold			
0	1	0	Reset			
1	0	1	Set			
1	1	?	Not allowed			

Graphical symbol

If S & R both 1 at same time, Q = Q' = 1

SR Latch

Х

State Transition Diagram: The excitation table in graphical form

Excitation Table: What are the necessary inputs to cause a particular kind of change in state?

Table

Q

R

S

SR

Latch

• Similar – made from NANDs

S	R	Q	Q	
0	1	1	0	Sot state
1	1	1	0	Sel siale
1	0	0	1	
1	1	0	1	Reset state
0	0	1	1	Undefined

(b) Function table

Gated SR Latch

- Add Control Input
 - Typically, control signal is referred to as a clock
- Clock controls when state can change

(a) Logic diagram

(b) Function table

Gated SR Latch

Gated D Latch

• No illegal state

(a) Circuit

		at	cł	ו
	0 0 1 0		1 1 1	
Cha	aracte (eristic Q+ =	: Ec D	quation 0
	Exc T	itatio able	n	
	Q	Q+	D	\bigtriangledown
	0	0	0	1
	0	1	1	
	1	0	0	State Transition
	1	1	1	Diagram

Detailed Function Table						
D Q Q+						
0	0	0				
0	0					
1	0	1				
1	1 1 1					

Transparency

- As long as C (the *trigger*) is high, state can change
- This is called *transparency*
- What's problem with that?
- Output of one latch may feedback

Flip-Flops

- Ensure only one transition
- Two major types
- Master-Slave
 - Two stage
 - Output not changed until clock disabled
- Edge triggered
 - Change happens when clock level changes

Master-Slave D Flip-Flop

• Either Master or Slave is enabled, not both

Have We Fixed the Transparency Problem?

- Output no longer transparent
 - Combinational circuit can use last values
 - New inputs appear at latches
 - Not sent to output until clock low
- But changes at input of FF when clock high can affect output
- Solution: *edge-triggered flip-flops*
- New state latched on *clock transition*
 - Low-to-high or high-to-low
- Changes when clock high are ignored
- Note: Master-Slave also called *pulse triggered*

D Flip-Flop

(a) Circuit A positive-edge-triggered D flip-flop

D Latch versus D Flip-Flop

(a) Circuit

Comparison of level-sensitive and edge-triggered devices

JK Flip-Flop D Q Q Κ $\overline{\mathsf{Q}}$ $\overline{\mathsf{Q}}$ Clock (a) Circuit Q(t+1)JΚ 0 0 Q(t)J Q 0 1 0 1 0 1 Q Κ $\overline{Q}(t)$ 1 1 (b) Truth table (c) Graphical symbol

- Not used much anymore in VLSI
- Advantageous only if using FF chips

JK	(Fl	ip-	Flo	p
Q	00	01	11	10
0	0	0	1	1
1	1	0	0	1

Characteristic Equation Q + = JQ' + K'Q

Excitation Table							
Q	Q+	J	Κ				
0	0	0	Х				
0	1	1	Х				
1	0	Х	1				
1	1	Х	0				

State Transition Diagram

Detailed Function Table							
J	Κ	Q	Q+				
0	0	0	0				
0	0	1	1				
0	1	0	0				
0	1	1	0				
1	0	0	1				
1	0	1	1				
1	1	0	1				
1	1	1	0				

T Flip-Flop

- Useful in counters
- Not available in IC form
- T Latches do not exist

(b) Truth table

(c) Graphical symbol

T Flip-Flop

(d) Timing diagram

ŢŢ	ip-	Flo	p
Q	0	1	I
0	0	1	
1	1	0	

Characteristic Equation $Q + = T'Q + TQ' = T \oplus Q$

Excitation Table						
Q	Q+	D				
0	0	0				
0	1	1				
1	0	1				
1	1	0				

State Transition Diagram

Detailed Function Table					
T Q Q+					
0	0	0			
0	1	1			
1	0	1			
1 1 0					

Standard Symbols – Latches

Circle at input indicates negation

Symbols – Master-Slave

(b) Master-Slave Flip-Flops

Inverted L indicates postponed output Circle indicates whether enable is positive or negative

Symbols – Edge-Triggered

(c) Edge-Triggered Flip-Flops

Arrow indicates edge trigger

Clear and Preset Inputs

Choosing a Flip-Flop

- RS Clocked Latch:
 - used as storage element in narrow width clocked systems
 - its use is not recommended!
 - however, fundamental building block of other flipflop types
- D Flipflop:
 - minimizes wires, much preferred in VLSI technologies
 - simplest design technique
 - best choice for storage registers
- JK Flipflop:
 - versatile building block: can be used to implement D and T FFs
 - usually requires least amount of logic to control Q+
 - however, has two inputs with increased wiring complexity
- T Flipflop:
 - doesn't really exist, constructed from J-K FFs
 - usually best choice for implementing counters
- Preset and Clear inputs highly desirable!!

Characteristic Equation & Excitation Table Summary

Device Type	Characteristic Equation
SR latch	Q+ = S + R'Q
D latch	Q + = D
JK flip-flop	Q+ = JQ' + $K'Q$
T flip-flop	Q + = TQ' + T'Q

Q	Q+	S	R	D	J	Κ	Т
0	0	0	Х	0	0	Х	0
0	1	1	0	1	1	Х	1
1	1	0	1	1	Х	1	1
1	1	Х	0	0	Х	0	0

3-31

Implementing One FF in Terms of Another

- Design Procedure: Implementing D FF with a J-K FF:
 - 1. Start with K-map of Q+ = f(D, Q)
 - 2. Create K-maps for J and K with same inputs (D, Q)
 - 3. Referring to excitation table, fill in K-maps with appropriate values for J and K to cause the same state changes as in the original K-map

Implementing One FF in Terms of • The circuit Another

- Clock Periodic event, causes state of memory element to change
- Setup time time that D must be available before clock edge
- Hold time time that D must be stable after clock edge

Propagation Delay

 Propagation delay – time after edge when output is available

Clock Pulse Requirements

- Basically a max clock frequency
- Pulse cannot be too narrow

Cascaded Flip-Flops

Shift Register Have S, R (preset, preclear) inputs

New value to first stage while second stage obtains current value of first stage

Correct Operation, assuming positive edge triggered FF

Cascaded Flipflops

- Why this works:
 - Propagation delays far exceed hold times;
 - Clock width constraint exceeds setup time incorrect operation if clock period too short!
 - This guarantees following stage will latch current value before it is replaced by new value
 - Assumes infinitely fast distribution of the clock

Clock Skew

• Clock skew

- Definition: difference between arrival times of the clock at different FFs
- Clock skew also caused by difference setup and hold times of different devices

Asynchronous Inputs and

Metastability

- Asynchronous Inputs Are Dangerous!
 - Since they take effect immediately, glitches can be disastrous
- Synchronous inputs are greatly preferred!
- What happens when an asynchronous input is not synchronized?
- When FF input changes close to clock edge, the FF may enter the metastable state: neither a logic 0 nor a logic 1
- It may stay in this state an indefinite amount of time, although this is not likely in real circuits

Q

Oscilloscope Traces Demonstrating Synchronizer Failure and Eventual Decay to Steady State

Simple Synchronizer

- But asynchronous inputs cannot be avoided
 - e.g., reset signal, memory wait signal
- Initial versions of commercial IC's that suffered metastability
 - Zilog Z-80 Serial I/O Interface
 - Intel 8048 microcontroller
 - AMD 29000 RISC microprocessor
- A synchronizer samples an asynchronous input and produces an output that meets the setup and hold times required in a synchronous system

A Better Synchronizer

- The probability of failure can never be reduced to 0, but it can be reduced
 - Synchronizer failure becomes a big problem for very high speed systems
- How to get a flip-flop out of the metastable state:
 - Force the flip-flop into a valid logic state using input signals that meet the published specifications for minimum pulse width, setup time, and so on.
 - Wait "long enough," so the flip-flop comes out of metastability on its own
 - slow down the system clock
 - this gives the synchronizer more time to decay into a steady state
 - Use fastest possible logic in the synchronizer
 - S or AS TTL D-FFs are recommended (applicable only to TTL circuits)
 - Cascade two synchronizers

