

FUZZY EXPERT SYSTEMS

ROSLINA RASHID Prepared by AMIRA MOHD NASIB MENAKA NARAYANASAMY

innovative • entrepreneurial • global

ocw.utm.my

A set of mathematical principles for knowledge representation based on degrees of membership rather than classical

Differences Between Conventional Logic & Fuzzy Logic

Boolean @ Conventional Logic	Fuzzy Logic
 Uses sharp distinctions ➤ Exp: max height for short =170cm ✓ 170.5cm is considered tall 	 No distinct values Exp: John is very tall
 Draw lines between members of a class & non-members 	 Do not distinguish members of a class & non-members
 Can be absurd ➤ Is 170cm really short? 	 Avoids absurdities ➢ Reflects on how people think ➢ Creates a model based on ✓ Sense of words ✓ Decision making ✓ Common sense
 Has only two values (0 or 1) 	 Has an extended range of values between 0 and 1
 Possibility of having "True" or "False" only 	 Possibility of having a little "Truth" in "False"

History of Fuzzy Logic

Jan Lukasiewicz (1930s)

- Introduced extended range of logic (0 < possibility < 1)
- Lead to inexact reasoning technique (possibility theory)

Max Black (1937)

- Published "Vagueness: an exercise in logical analysis
- Vagueness=matter of probability
- Defined 1st simple fuzzy set & outlined basic ideas of fuzzy set operations

Lotfi Zadeh (1965)

- Published "Fuzzy Sets"
- Extended work on possibility theory into a formal system of mathematical logic
- Introduced new concept for applying natural language terms
- Represented new logic & manipulated fuzzy terms into Fuzzy Logic

Fuzzy Set versus Crisp Set

Fuzzy Set	Crisp Set
 Set with fuzzy boundaries 	 Set with distinct boundaries
•Principle of dichotomy X = universe of discourse x = elements $_A(x) : X \longrightarrow [0,1]$ (membership function) If x totally in A, $_A(x) = 1$ x not in A, $_A(x) = 0$ x partly in A, $_O<_A(x) < 1$	• Principle of dichotomy X = classical (crisp) set x = elements $f_A(x) : X \rightarrow 0,1$ (characteristic function) If x $\in A$ value = 1 x $\in A$ value = 0
 Element belongs to a fuzzy set with a certain degree of membership Maybe partly true @ partly false 	• Logic cannot represent vague concepts
• Degree is a real number in the interval [0,1]	

Representing Fuzzy Set

Step 1: Membership function determined

Step 2: Produce a fuzzy set

Step 3: Assume universe of discourse X = reference super set

Step 4: Express the fuzzy set as a function

Crisp and Fuzzy Subset

Linguistic Variables and Hedges

- Linguistic variable
- Fuzzy variable
- Used in fuzzy rules
- > Exp: for speed (very slow, slow, medium, fast, very fast)
- Hedges
- Fuzzy set qualifiers
- Carried by linguistic variable
- > Modifies the shape of fuzzy sets
- Exp: (very, somewhat, quite, slightly, more or less)

- Acts as operations
- Very performs concentrations (creates a new subset)
- More or less performs dilation (expands the set)
- > Breaks down continuums into fuzzy intervals
- Causes fuzzy sets to overlap
- Helps to reflect human thinking
- ➤ Used as:
- All-purpose modifiers
- Truth-values
- Probabilities
- Quantifiers
- Possibilities

Operations Of Fuzzy Set

On 19th century: Georg Cantor describes how CRISP can be interact INTERACTIONS = OPERATIONS

	COMPLEMENT	CONTAINMENT
Operation on classical set	Not A A	BA
Crisp set	WHO does NOT BELONG to the set?	Which sets BELONG TO WHICH other sets?
Fuzzy set	HOW MUCH do elements not belong to the set?	Which sets BELONG to other sets?
Comments	 An opposite of the set If A is the fuzzy set, the complom (a) of 1A is a solution: 	 A set can contain other set the smaller set: subset Crisp set: All elements in a subset is fully belong to a larger set which gives membership values is 1 Fuzzy set: membership values of each element I subset is less than to the larger set

	COMPLEMENT	CONTAINMENT	
Operation on classical set	Not A A	BA	
Crisp set	WHO does NOT BELONG to the set?	Which sets BELONG TO WHICH other sets?	
Fuzzy set	HOW MUCH do elements not belong to the set?	Which sets BELONG to other sets?	
Comments	 An opposite of the set If A is the fuzzy set, the complom (a) of 1A is a (solution) 	 A set can contain other set the smaller set: subset Crisp set: All elements in a subset is fully belong to a larger set which gives membership values is 1 Fuzzy set: membership values of each element I subset is less than to the larger set 	

	INTERSECTION	UNION	
Operation on classical set	AB		
Crisp set	Which element belongs to both sets?	Which element belongs to either set?	
Fuzzy set	How much of the elements is in both sets?	How much of the element is in either set?	
Comments	• Fuzzy: An element may partly belong to both sets with different membership value $\mu_{A\cap B}(x) = \min[\mu_A(x), \mu_B(x]) = \mu_A(x) \cap \mu_B(x)$ $x \in X$ Where (choose the lowest of membership value)	 Reverse of the intersection Union is the largest membership value of the element in either set μ_{AUB}(x) = max[μ_A(x),μ_B(x]) = μ_A(x) ∪ μ_B(x) x ∈ X Where 	

Crisp and fuzzy sets have SAME PROPERTY. And crisp can be considered just a special case of fuzzy set!

PROPERTIES	
Commutativity	$A \cup B = B \cup A; A \cap B = B \cap A$
Associativity	$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$
Distributivity	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
Idempotency	$A \cup A = A ; A \cap A = A$
Identity	$A \cup \emptyset = A$ $A \cap X = A$ $A \cap \emptyset = \emptyset$ $A \cup X = X$

PROPERTIES	
Involution	-A (-A) = A
Transivity	If $(A \otimes B) \cap (B \otimes C)$ then $(A \otimes C)$
De Morgan's Laws	$-(A \cap B) = -A \cup -B$ $-(A \cap B) = -A \cap -B$

• Variety of fuzzy sets can be obtain from the existing one

Ex; fuzzy set A (tall men) and fuzzy set B (short men), thus fuzzy set C (not very tall men and not very short men) and set D (not very very tall and not very very short men) can be derived by using..

$$\mu_{\mathcal{C}}(X) = [1 - \mu_{A}(x)^{2}] \cap [1 - (\mu_{B}(x))^{2}]$$

$$\mu_{D}(X) = [1 - \mu_{A}(x)^{4}] \cap [1 - (\mu_{B}(x))^{4}]$$

Fuzzy Rules

What??

CLASSICAL RULES

Rule 1

IF speed is > 100 THEN Stopping_distance is long

Rule 2

IFspeed is < 40</th>THENstopping_distance is short

- Speed can vary between 0-220km/h
- But linguistic variable (stopping_distance) can only take either long OR short
- Classical rules are expressed in blackand-white languange/Boolean logic

FUZZY RULES

CUT at least 90% rules

Rule 1

ocw.utm.m

IFspeed is fastTHENStopping_distance is long

Rule 2

- IFspeed is slowTHENstopping_distance is short
- Linguistic variable speed has the range (0-220km/h) which the value includes slow, medium and fast
- Linguistic variable of stopping_distance between (0-300km) include sets of short, medium and long

HOW TO REASON with fuzzy logic??

MONOTOMIC SELECTION (Cox, 1994)

The value of truth membership grade of the rule consequent can be estimated directly from a corresponding truth membership grade in the antecedent.

Can antecedent or a consequent have multiple parts?? IF x is A **ANTECEDENT** THEN y is B CONSEQUENT ĪF project_duration is long AND project_staffing is large AND project_funding is inadequate THEN risk is high IF service is excellent OR food is delicious THEN tip is generous

Can antecedent or a consequent have multiple parts?? IF x is A **ANTECEDENT** THEN CONSEQUENT y is B IF temperature is hot THEN hot water is reduced; cold water is increased. All parts of consequent are affected equally by the antecedent

Single output fuzzy Aggregates all output fuzzy Defuzzifies the output fuzzy into a single number