

Well Test Interpretation SKM4323

THE DERIVATIVE

Azmi Mohd Arshad

Department of Petroleum Engineering

OPENCOURSEWARE

WEEK 07

Introduction

- Methods using the pressure derivative take advantage of the advantages of the type curve representation and counteract the drawbacks of the logarithmic representation.
- These methods are based on an observed fact: in a well test the pressure variation is more significant than the pressure itself.
- This is illustrated by the fact that it is the slope of the semilog straight lines that is used to get information on the reservoir in conventional methods.
- D. Bourdet's approach were proposed in oil industry literature in the early eighties.

Fig. 6.1

Fig. 6.2 Type curves for a well with wellbore storage and skin (infinite acting homogeneous reservoir)

Procedure

- Plot the measured field data points and their derivative, $\Delta t(d\Delta p/d\Delta t)$, simultaneously on tracing paper using the scale provided by the type curves.
- Look for a type curve to match the field data.
- Note the C_Dexp(2S) value of the type curve matching the data best.
- Pick a match point in both the type curve coordinate system and the data system.
- Analyze.

Fig. 6.3a Interpretation with the derivative

Fig. 6.3b Vertical matching

Type curves for a well with wellbore storage and skin (infinite acting homogeneous reservoir)

Fig. 6.3c Vertical + horizontal matching
Type curves for a well with well storage and skin (infinite homogeneous reservoir behavior)

- The points of the derivative of radial flow measurements correspond to a horizontal straight line. The points are matched on the 0.5 ordinate horizontal straight line on the set of curves.
- The points of the derivative of wellbore storage effect measurements are located on a slope 1 straight line. They are matched on the slope 1 straight line passing through the origin of the coordinates on the set of type curves.

Example 8

(In-class workshop)

- Drawdown -

Example 9

(In-class workshop)
- Buildup-

Direct interpretation

- Permeability is calculated based on the value ∆p'_{st} corresponding to the stabilization of the derivative.
- The value of this derivative expressed in dimensionless terms is known, it is equal to 0.5.

Fig. 6.4

Direct interpretation.../2

• The expression of $\Delta p'_{st}$ in relation to 0.5 is equal to:

$$\Delta p_{st}' = \frac{141.2 \, qB\mu}{kh} \times 0.5 \quad \text{(in practical US units)} \qquad \textbf{(6.14)}$$

It is used to calculate the reservoir's kh:

$$kh = 141.2 qB\mu x \frac{0.5}{\Delta p'_{st}}$$
 (in practical US units) (6.15)

Direct interpretation.../3

- Wellbore storage can be calculated if the coordinates of a point located on the slope 1 straight line are known: Δp_1 and Δt_1 .
- During dominating wellbore storage effect:

$$\Delta p_1 = \frac{qB}{24C} \Delta t_1 \tag{6.16}$$

hence:

$$C = \frac{qB}{24} \frac{\Delta t_1}{\Delta p_1}$$
 (6.17)

Direct interpretation.../4

• The skin can be calculated if the coordinates of a point located on the semi-log straight line are known: Δp_s , Δt_s .

$$S=1.151 \left(\frac{\Delta p_{s}}{2.303 \Delta p_{st}^{'}} - \log \frac{\Delta t_{s}}{1 + \frac{\Delta t_{s}}{t_{p}}} - \log \frac{k}{\phi \mu c_{t} r_{w}^{2} + 3.23} \right)$$
 (6.18)

• In the case of a varying flow rate, a superposition function must be used to calculate it.

Example 10

(In-class workshop)

Welltest Interpretation Using Software

In-class workshop

References

- 1. Bourdarot, Gilles: Well Testing: Interpretation Methods, Éditions Technip, 1998.
- 2. Internet.

