Well Test Interpretation SKM4323

TYPE CURVES

Azmi Mohd Arshad

Department of Petroleum Engineering

OPENCOURSEWARE

WEEK 06

Introduction

- Type curves first appeared in oil industry literature in the seventies.
- Several kinds, as listed below, are used to interpret a test in a vertical well with a infinite homogeneous reservoir:
 - Agarwal et al. type curves;
 - McKinley type curves;
 - Earlougher and Kersch type curves;
 - Gringarten et al. type curves.
- Gringarten et al. curves are the most complete and practical to use. They are also the most widely used in oil industry literature.

- A type curve represents the variations in pressure versus time for a specified reservoir-well configuration.
- It is calculated using an analytic model and expressed in dimensionless variables.
- The analytic model used by Gringarten to describe a vertical well in an infinite homogeneous reservoir is discussed by F. Daviau (1986).

Fig. 5.1 Type curves for a well with wellbore storage and skin (infinite homogeneous reservoir)

Procedure

- Plot the measured pressure drop Δp versus Δt on tracing paper lying on the type curves, using the log-log scale of the type curves.
- Look for the portion of an underlying type curves matching the data best. Only translation are allowed during this step, keeping the two grids parallel.
- Note the specifications of the type curve where the measured points match; they correspond to value of C_Dexp(2S).
- Pick a match point, M, whose coordinates can be read in both the type curve system of axes $(p_D, t_D/C_D)$ as well as in the field data system $(\Delta p, \Delta t)$. The point M can be chosen anywhere on the plot, not necessarily on the curve.

Dimensionless time group
$$\frac{t_D}{C_D}$$
 = 0.000295 $\frac{kh}{\mu}$ $\frac{\Delta t}{C}$

@ 0 8 0 BY NC SA

Dimensionless time group
$$\frac{t_D}{C_D} = 0.000295$$
 $\frac{kh}{\mu}$ $\frac{\Delta t}{C}$

Fig. 5.2b

Dimensionless time group $\frac{t_D}{C_D}$ = 0.000295 $\frac{kh}{\mu} \frac{\Delta t}{C}$

Fig. 5.2c

Interpretation

- The ordinate of the match point is measured:
 - in the type curve system of axes: p_D
 - in the field data system of axes: Δp .

As:
$$p_D = \frac{kh}{141.2 \, qB\mu} \Delta p$$
 (in practical US units)

• The proportionality factor between p_D and Δp can be used to determine the reservoir's kh:

$$kh = 141.2 qB\mu \frac{(p_D)_M}{(\Delta p)_M}$$

(5.4)

Interpretation

• In the same way the abscissa of the match point, M, is measured in the type curve system of axes, t_D/C_D and in the field data system of axes: Δt ..

$$t_{\rm D}/C_{\rm D} = \frac{0.000295\,kh}{\mu C} \Delta t \qquad \text{(in practical US units)} \qquad \textbf{(5.5)}$$
 As kh is already determined

• The proportionality factor between t_D/C_D and Δt can be used to calculate C, the wellbore storage:

$$C = \frac{0.000295 \,\text{kh}}{\mu} \frac{(\Delta t)_{\text{M}}}{(t_{\text{D}}/C_{\text{D}})_{\text{M}}}$$

(5.6)

Interpretation

• The type curve where the data have been matched is characterized by C_Dexp(2S).

C_D is then calculated:

$$C_{D} = \frac{0.89 \,\mathrm{C}}{\mathrm{h} \phi \,\mathrm{c_{t}} \,\mathrm{r_{w}^{2}}} \qquad \text{(in practical US units)} \tag{5.7}$$

• The value of CDexp(2S) is used to determine the skin:

$$S = \frac{1}{2} ln \frac{(C_D exp(2S))}{C_D}$$

(5.8)

Using Type Curves During Buildup

- Type curves were established for constant flow rate production (drawdown).
- The curves can be used directly to analyze buildup if:

```
\begin{array}{ll} - \ \Delta t << t_p & \text{after constant flow rate;} \\ - \ \Delta t << t_{p(n-1)} & \text{after a multirate history} \\ t_{p(n-1)} & \text{duration of the last production} \\ & \text{period before shut-in.} \end{array}
```

- These conditions are the same as for using MDH method.
- If these conditions do not exist, using the types directly may lead to inaccurate results.

Using Type Curves During Buildup

- The effect of short production time can be seen in a flattening out of the type curve, the buildup curve under the drawdown type curve.
- Attempting to force a match between the buildup data points and a drawdown curve would result in a type curve located too high on the set of curves and therefore in inaccurate results.

Using Type Curves During Buildup

• The most useful method of using drawdown type curves for buildup is Agarwal's method. It consists in plotting each measurement versus an equivalent time, Δt_e as defined below instead of versus Δt :

$$\Delta t_{e} = \frac{\Delta t}{1 + \frac{\Delta t}{t_{p}}}$$
 (5.9)

• The equivalent time is very close to Δt for Δt values that are small compared to production time.

Using Type Curves During Buildup

- The buildup measured points plotted versus ∆t_e are located on a drawdown curve and the flattening effect of buildup disappears.
- F. Daviau indicates that Agarwal's method can be used for buildup provided that the semilog straight line was reached during the previous drawdown period.

Example 6

(In-class workshop)

- Drawdown -

Example 7

(In-class workshop)

- Buildup -

References

- 1. Bourdarot, Gilles: Well Testing: Interpretation Methods, Éditions Technip, 1998.
- 2. Internet.

