

SEB4233 Biomedical Signal Processing

Introduction to Wavelet

Dr. Malarvili Balakrishnan

Inspiring Creative and Innovative Minds

ocw.utm.my

Overview

- Wavelet
 - \succ A small wave
- Wavelet Transforms
 - Convert a signal into a series of wavelets

- Provide a way for analyzing waveforms, bounded in both frequency and duration
- > Allow signals to be stored more efficiently than by Fourier transform
- > Be able to better approximate real-world signals
- > Well-suited for approximating data with sharp discontinuities
- "The Forest & the Trees"
 - ≻ Notice gross features with a large "window"
 - ≻ Notice small features with a small "window"

Mathematical Transformation

• Why

➤ To obtain a further information from the signal that is not readily available in the raw signal.

Raw Signal

≻ Normally the time-domain signal

- Processed Signal
 - A signal that has been "transformed" by any of the available mathematical transformations
- Fourier Transformation

The most popular transformation

Time-Domain Signal

- The Independent Variable is Time
- The Dependent Variable is the Amplitude
- Most of the Information is Hidden in the Frequency Content

Frequency Transforms

- Why Frequency Information is Needed
 - Be able to see any information that is not obvious in timedomain
- Types of Frequency Transformation
 - Fourier Transform, Hilbert Transform, Short-time Fourier Transform, Wigner Distributions, the Radon Transform, the Wavelet Transform ...

Frequency Analysis

- Frequency Spectrum
 - Be basically the frequency components (spectral components) of that signal
 - \succ Show what frequencies exists in the signal
- Fourier Transform (FT)
 - > One way to find the frequency content
 - > Tells how much of each frequency exists in a signal

Stationarity of Signal

- Stationary Signal
 - Signals with frequency content unchanged in time
 - > All frequency components exist at all times
- Non-stationary Signal
 - Frequency changes in time

Stationarity of Signal

Non-stationary Signals

Same in Frequency Domain

At what time the frequency components occur? FT can not tell!

- FT Only Gives what Frequency Components Exist in the Signal
- The Time and Frequency Information can not be Seen at the Same Time
- Time-frequency Representation of the Signal is Needed

Most of Transportation Signals are Non-stationary.

(We need to know whether and also when an incident was happened.)

ONE EARLIER SOLUTION: SHORT-TIME FOURIER TRANSFORM (STFT)

Short Time Fourier Transform (STFT)

- Dennis Gabor (1946) Used STFT
 - To analyze only a small section of the signal at a time -- a technique called *Windowing the Signal*.
- The Segment of Signal is Assumed *Stationary*
- A 3D transform

Drawbacks of STFT

- Unchanged Window
- Dilemma of Resolution
 - Narrow window -> poor frequency resolution
 - Wide window -> poor time resolution
- Heisenberg Uncertainty Principle
 - Cannot know what frequency exists at what time intervals

Multiresolution Analysis (MRA)

- Wavelet Transform
 - An alternative approach to the short time Fourier transform to overcome the resolution problem
 - Similar to STFT: signal is multiplied with a function
- Multiresolution Analysis
 - Analyze the signal at different frequencies with different resolutions
 - Good time resolution and poor frequency resolution at high frequencies
 - Good frequency resolution and poor time resolution at low frequencies
 - More suitable for short duration of higher frequency; and longer duration of lower frequency components

Advantages of WT over STFT

- Width of the Window is Changed as the Transform is Computed for Every Spectral Components
- Altered Resolutions are Placed

Principles of Wavelet Transform

- Split Up the Signal into a Bunch of Signals
- Representing the Same Signal, but all Corresponding to Different Frequency Bands
- Only Providing What Frequency Bands Exists at What Time Intervals

Definition of

Continuous Wavelet Transform

Translation Scale (The location of the window)

Mother Wavelet

- Wavelet
 - ≻ Small wave

> Means the window function is of finite length

- Mother Wavelet
 - > A prototype for generating the other window functions
 - All the used windows are its dilated or compressed and shifted versions

Scale

Scale

- S>1: dilate the signal
 S<1: compress the signal
- Low Frequency -> High Scale -> Non-detailed Global View of Signal -> Span Entire Signal
- High Frequency -> Low Scale -> Detailed View Last in Short Time
- Only Limited Interval of Scales is Necessary

Computation of CWT

$$CWT_x^{\psi}(\tau, s) = \Psi_x^{\psi}(\tau, s) = \frac{1}{\sqrt{|s|}} \int x(t) \bullet \psi^*\left(\frac{t-\tau}{s}\right) dt$$

- Step 1: The wavelet is placed at the beginning of the signal, and set s=1 (the most compressed wavelet);
- Step 2: The wavelet function at scale "1" is multiplied by the signal, and integrated over all times; then multiplied by τ;
- Step 3: Shift the wavelet to $t = 1/\sqrt{s}$, and get the transform value at $t=\tau$ and s=1;
- Step 4: Repeat the procedure until the wavelet reaches the end of the signal;
- Step 5: Scale s is increased by a sufficiently small value, the above procedure is repeated for all s;
- Step 6: Each computation for a given *s* fills the single row of the time-scale plane;
- Step 7: CWT is obtained if all *s* are calculated.

Resolution of Time and Frequency

• Each box represents a equal portion

• Resolution in STFT is selected once for entire analysis

Comparison of Transformations

Mathematical Explanation

CWT can be regarded as the inner product of the signal with a basis function

Discretization of CWT

- It is Necessary to Sample the Time-Frequency (scale) Plane.
- At High Scale s (Lower Frequency f), the Sampling Rate N can be Decreased.
- The Scale Parameter *s* is Normally Discretized on a Logarithmic Grid.
- The most Common Value is 2.

$$N_2 = s_1 / s_2 \cdot N_1 = f_1 / f_2 \cdot N_1$$

Effective & Fast DWT

- The Discretized CWT is not a True Discrete Transform
- Discrete Wavelet Transform (DWT)
 - > Provides sufficient information both for analysis and synthesis
 - Reduce the computation time sufficiently
 - ≻ Easier to implement
 - Analyze the signal at different frequency bands with different resolutions
 - Decompose the signal into a coarse approximation and detail information

SUBBABD Coding Algorithm

- Halves the Time Resolution
 - > Only half number of samples resulted
- Doubles the Frequency Resolution
 - The spanned frequency band halved

Decomposing Non-Stationary Signals (1)

Decomposing Non-Stationary Signals (2)

Reconstruction (1)

• What

How those components can be assembled back into the original signal without loss of information?

≻ A Process After *decomposition* or *analysis*.

➤ Also called synthesis

- How
 - Reconstruct the signal from the wavelet coefficients
 - Where wavelet analysis involves filtering and downsampling, the wavelet reconstruction process consists of upsampling and filtering

Reconstruction (2)

- Lengthening a signal component by inserting zeros between samples (upsampling)
- MATLAB Commands: <u>idwt</u> and <u>waverec</u>; <u>idwt2</u> and <u>waverec2</u>.

Wavelet Bases

Wavelet Family Properties

		1	1				1		1		1	1	1		
Property	morl	mexh	meyr	haar	dbN	symN	coifN	biorNr.Nd	rbioNr.Nd	gaus	dmey	cgau	cmor	fbsp	shan
Crude	•	•								•		•	•	٠	•
Infinitely regular	•	•	•							•		٠	•	٠	•
Arbitrary regularity					•	•	•	•	•						
Compactly supported orthogonal				•	•	•	•								
Compactly supported biothogonal								•	•						
Symmetry	•	٠	٠	•				•	•	•	•	٠	•	٠	•
Asymmetry					٠										
Near symmetry						•	•								
Arbitrary number of vanishing moments					•	•	•	•	•						
Vanishing moments for $oldsymbol{\Phi}$							•								
Existence of 🌢			•	•	•	•	•	•	•						
Orthogonal analysis			٠	•	٠	٠	٠								
Biorthogonal analysis			٠	•	٠	•	٠	•	•						
Exact reconstruction	8	٠	٠	•	٠	•	•	•	•	•	а	٠	٠	٠	•
FIR filters				•	٠	•	•	•	•		•				
Continuous transform	•	٠	٠	•	٠	٠	٠	•	•	•					
Discrete transform			٠	•	٠	٠	٠	•	•		•				
Fast algorithm				•	•	•	•	•	•		•				
Explicit expression	•	٠		•				For splines	For splines	•		٠	٠	٠	•
Complex valued												٠	•	٠	•
Complex continuous transform												٠	•	٠	•
FIR-based approximation											•				

Wavelet Software

ocw.utm.my

- A Lot of Toolboxes and Software have been Developed
- One of the Most Popular Ones is the MATLAB Wavelet Toolbox http://www.mathworks.com/access/helpdesk/help/toolbox/wavelet/wavelet.html

🗿 Wavelet Toolbox - Microsoft Internet Explorer
File Edit View Favorites Tools Help
🌀 Back 🔹 🕥 - 💽 🛃 🏠 🔎 Search 🧙 Favorites 🧭 🔗 - 🌺 🖀 - 📃 🥞 🎉 🎉 🎉 🕉
Address 🔕 http://www.mathworks.com/access/helpdesk/help/toolbox/wavelet/wavelet.html
🝸 👻 🖉 🖌 💽 Search Web 🕞 🗔 🕶 NEW Toolbar Update 🐨 🖂 Mail 👻 🧐 My Yahoo! 💽 Games 👻 👘 Shopping 👻 🌮 Personals 💌
Google 🗸 and Associated Properties" 🗾 💏 Search Web 🔹 🦚 🗗 26 blocked 📳 AutoFill 💽 Options 🔗 🔯 Wavelet Families and Associated Properties
home Store contact us site help
Products & Services Industries Academia Support User Community Company
Contents Index Wavelet Toolbox 0.0036 0.0036 0.0036 0.0036
Getting Started

GUI Version in Matlab

- Graphical User Interfaces
- From the MATLAB prompt, type <u>wavemenu</u>, the Wavelet Toolbox Main Menu appears

Other Software Sources

- WaveLib [http://www-sim.int-evry.fr/~bourges/WaveLib.html]
- EPIC [http://www.cis.upenn.edu/~eero/epic.html]
- Imager Wavelet Library [http://www.cs.ubc.ca/nest/imager/contributions/bobl/wvlt/download/]
- Mathematica wavelet programs [http://timna.Mines.EDU/wavelets/]
- Morletpackage [ftp://ftp.nosc.mil/pub/Shensa/]
- <u>p-wavelets</u> [ftp://pandemonium.physics.missouri.edu/pub/wavelets/]
- WaveLab [http://playfair.Stanford.EDU/~wavelab/]
- Rice Wavelet Tools [http://jazz.rice.edu/RWT/]
- <u>Uvi_Wave Software</u> [http://www.tsc.uvigo.es/~wavelets/uvi_wave.html]
- WAVBOX [ftp://simplicity.stanford.edu/pub/taswell/]
- Wavecompress [ftp://ftp.nosc.mil/pub/Shensa/]
- <u>WaveThresh</u>
 [http://www.stats.bris.ac.uk/pub/software/wavethresh/WaveThresh.html]
- WPLIB [ftp://pascal.math.yale.edu/pub/wavelets/software/wplib/]
- W-Transform Matlab Toolbox [ftp://info.mcs.anl.gov/pub/W-transform/]
- XWPL [ftp://pascal.math.yale.edu/pub/wavelets/software/xwpl/]

Wavelet Applications

- Typical Application Fields
 - Astronomy, acoustics, nuclear engineering, sub-band coding, signal and image processing, neurophysiology, music, magnetic resonance imaging, speech discrimination, optics, fractals, turbulence, earthquake-prediction, radar, human vision, and pure mathematics applications
- Sample Applications
 - Identifying pure frequencies
 - De-noising signals
 - > Detecting discontinuities and breakdown points
 - Detecting self-similarity
 - Compressing images

De-Noising Signals

- Highest Frequencies Appear at the Start of The Original Signal
- Approximations Appear Less and Less Noisy
- Also Lose Progressively More High-frequency Information.
- In A₅, About the First 20% of the Signal is Truncated

Another De-Noising

Detecting Discontinuities and Breakdown Points

- The Discontinuous Signal Consists of a Slow Sine Wave Abruptly Followed by a Medium Sine Wave.
- The 1st and 2nd Level Details (D₁ and D₂) Show the Discontinuity Most Clearly
- Things to be Detected
 - The site of the change
 - The type of change (a rupture of the signal, or an abrupt change in its first or second derivative)
 - The amplitude of the change

37

Detecting Self-Similarity

- Purpose
 - How analysis by wavelets can detect a self-similar, or fractal, signal.
 - The signal here is the Koch curve a synthetic signal that is built recursively
- Analysis
 - If a signal is similar to itself at different scales, then the "resemblance index" or wavelet coefficients also will be similar at different scales.
 - In the coefficients plot, which shows scale on the vertical axis, this self-similarity generates a characteristic pattern.

Compressing Images

- Fingerprints
 - FBI maintains a large database of fingerprints — about 30 million sets of them.
 - The cost of storing all this data runs to hundreds of millions of dollars.
- Results
 - Values under the threshold are forced to zero, achieving about 42% zeros while retaining almost all (99.96%) the energy of the original image.
 - By turning to wavelets, the FBI has achieved a 15:1 compression ratio
 - better than the more traditional JPEG compression

Identifying Pure Frequencies

- Purpose
 - Resolving a signal into constituent sinusoids of different frequencies
 - ≻The signal is a sum of three pure sine waves

Analysis

D1 contains signal components whose period is between 1 and 2.

5

- Zooming in on detail D1 reveals that each "belly" is composed of 10 oscillations.
- D3 and D4 contain the medium sine frequencies.
- There is a breakdown between approximations A3 and A4 -> The medium frequency been subtracted.
- Approximations A1 to A3 be used to estimate the medium sine.
- Zooming in on A1 reveals a period of around 20.

