SEB4233
 Biomedical Signal Processing

Z-Transform

Dr. Malarvili Balakrishnan

Introduction

- The z-transform is the discrete-time counterpart of the Laplace transform.
- It can be used to assess the characteristic of discrete-time systems in terms of its impulse response and frequency response.
- The z-transform can be used determine the solution to the difference equation.

Definition of Z-Transform

- For a given sequence $x[n]$, its z-transform $X(z)$ is defined as

$$
\begin{aligned}
& X(z)=\sum_{n=-\infty}^{\infty} x(n) z^{-n} \\
& x(n)=\frac{1}{2 \pi j} \oint X(z) z^{n-1} d z
\end{aligned}
$$

Z-Transform Example

A signal is defined as

$$
\begin{aligned}
x(n) & =a^{n} & & n \geq 0 \\
& =0 & & \text { elsewhere }
\end{aligned}
$$

$$
X(z)=\sum_{\nu=a}^{\infty}(a)^{n} z^{-n}=1+a^{1} z^{-1}+a^{2} z^{-2}+a^{3} z^{-3}+a^{4} z^{-4}+\ldots .
$$

(Open formī)

From the close form solution, there is a pole where $z=a$ and a zero.

Z-Plane and Stability

- All the possible values of $X(z)$ lies in the z-plane.
- The maximum are at the poles and the zero value are at the zeros.
- For causal sequence, the system is stable if the poles are in the unit circle.

(a) Stable System

(b) Unstable system

Solution for Difference Equation and Transfer Function

- The z-transform can be used to determine the solution to difference equation. Given that the input-output relationship of a linear timeinvariant system is as follows

$$
y(n)=a(1) y(n-1)+a(2) y(n-2)=b(0) x(n)+b(1) x(n-1)+b(2) x(n-2)
$$

- The z-transform is

$$
\begin{gathered}
Y(z)+a(1) Y(z) z^{-1}+a(2) Y(z) z^{-2}=b(0) X(z)+b(1) X(z) z^{-1}+b(2) X(z) z^{-2} \\
H(z)=\frac{Y(z)}{X(z)}=\left[\frac{b(0)+b(1) z^{-1}+b(2) z^{-2}}{1+a(1)) z^{-1}+a(2) z^{-2}}\right]
\end{gathered}
$$

where $H(z)$ is the transfer function.

General Form of the Transfer Function

- For more general case, the transfer function is in the form

$$
H(z)=\frac{\sum_{n=0}^{N} b(n) z^{-n}}{\sum_{n=0}^{N} a(n) z^{-n}}
$$

where N is the polynomial order. The transfer function when factorized in term of the roots is

$$
H(z)=\frac{\prod_{n=0}^{N}\left(1-\beta(n) z^{-n}\right)}{\prod_{n=0}^{N}\left(1-\alpha(n) z^{-n}\right)}
$$

Inverse Z-Transform

- The system impulse response $h(n)$ is obtained from $H(z)$ by taking the inverse z -transform. If the following transfer function is used as example

$$
\begin{aligned}
H(z) & =\frac{Y(z)}{X(z)}=\frac{1}{1+a(1) z^{-1}+a(2) z^{-2}} \\
& =\frac{1}{\left(1-\alpha(1) z^{-1}\right)\left(1-\alpha(2) z^{-1}\right)}
\end{aligned}
$$

- The application of the partial fraction expansion results in

$$
H(z)=\frac{1}{\left(1-\alpha(1) z^{-1}\right)\left(1-\alpha(2) z^{-1}\right)}=\frac{A_{0}}{1-\alpha(1) z^{-1}}+\frac{A_{1}}{1-\alpha(2) z^{-1}}
$$

Relationship between the Z-Transform and Fourier Transform

- The Fourier transform can be obtained from the z-transform by making the substitution $z=\exp (j 2 \pi f)$
- A transfer function is

$$
H(z)=\frac{1}{1-z^{-1}+\frac{1}{2} z^{-2}}
$$

- The Fourier transform is
$H(\exp (j 2 \pi f))=\frac{1}{1-\exp (-j 2 \pi f)+\frac{1}{2} \exp (-j 4 \pi f)}=\frac{1}{1-\cos (2 \pi f)+\frac{1}{2} \cos (4 \pi f)+j\left(\sin (2 \pi f)-\frac{1}{2} \sin (4 \pi f)\right)}$

Relationship between the Z-Transform and Fourier Transform

- The Fourier transform when defined in terms of the magnitude and phase is

$$
\begin{aligned}
|H(\exp (j 2 \pi f))| & =\frac{1}{\sqrt{\left(1-\cos (2 \pi f)+\frac{1}{2} \cos (4 \pi f)\right)^{2}+\left(\sin (2 \pi f)-\frac{1}{2} \sin (4 \pi f)\right)^{2}}} \\
\phi(\exp (j 2 \pi f)) & =-\tan ^{-1}\left[\frac{\left(\sin (2 \pi f)-\frac{1}{2} \sin (4 \pi f)\right)}{\left(1-\cos (2 \pi f)+\frac{1}{2} \cos (4 \pi f)\right)}\right]
\end{aligned}
$$

Frequency Response of Transfer Function

