
Problem Solving

Programming Techniques I
SCJ1013

Dr Masitah Ghazali

Software Engineering vs Problem
Solving

• Software Engineering - A branch of Computer
Science & provides techniques to facilitate the
development of computer programs

• Problem Solving - refers to the entire process
of taking the statement of a problem and
developing a computer program that solves
that problem.

Slide 3- 2

• Software Engineering - A branch of Computer
Science & provides techniques to facilitate the
development of computer programs

• Problem Solving - refers to the entire process
of taking the statement of a problem and
developing a computer program that solves
that problem.

The Programming Process

The Programming Process

• SE concepts require a rigorous and systematic
approach to software development called
software development life cycle

• Programming process is part of the activities
in the software development life cycle

• SE concepts require a rigorous and systematic
approach to software development called
software development life cycle

• Programming process is part of the activities
in the software development life cycle

The Programming Process

This week

Building programs
•Edit
•Compile
•Link
•Run

Software Development Life Cycle
&Code

Figure 1-11: Process of system development

Building programs
•Edit
•Compile
•Link
•Run

Understand the problem:
•Input
•Output
•Process

Develop the solution
(Algorithm):
•Structure chart
•Pseudocode
•Flowchart Converting design to

computer codes.

e.g:
Flowchart -> C++ program

Software Development Life Cycle &
Algorithm

Figure 1-11: Process of system development

Algorithm is the steps
to solve problems

Converting design to
computer codes.

e.g:
Flowchart -> C++ program

Software Development Life Cycle
• Problem Analysis

Identify data objects
Determine Input / Output data
Constraints on the problem

• Design
Decompose into smaller problems
Top-down design

Structured Chart
Develop Algorithm

Pseudocode
Flowchart

• Problem Analysis
Identify data objects
Determine Input / Output data
Constraints on the problem

• Design
Decompose into smaller problems
Top-down design

Structured Chart
Develop Algorithm

Pseudocode
Flowchart

Software Development Life Cycle
• Implementation/coding/programming

Converting the algorithm into programming
language

• Testing
Verify the program meets requirements
System and Unit test

• Maintenance
All programs undergo change over time

• Implementation/coding/programming
Converting the algorithm into programming
language

• Testing
Verify the program meets requirements
System and Unit test

• Maintenance
All programs undergo change over time

Software Development Life Cycle

• Case Study: Converting Miles to Kilometres• Case Study: Converting Miles to Kilometres

Input, Processing, and OutputInput, Processing, and Output

Input, Processing, and Output

Three steps that a program typically performs:
1) Gather input data:

• from keyboard
• from files on disk drives

2) Process the input data
3) Display the results as output:

• send it to the screen
• write to a file

Three steps that a program typically performs:
1) Gather input data:

• from keyboard
• from files on disk drives

2) Process the input data
3) Display the results as output:

• send it to the screen
• write to a file

Exercise Week2_1

• Do Lab 2, Exercise 3, No. 1-4 in pg. 27-28.
• Identify the following information:

1. Input data

2. Process the input data

3. Output data

• Do Lab 2, Exercise 3, No. 1-4 in pg. 27-28.
• Identify the following information:

1. Input data

2. Process the input data

3. Output data

Representation of AlgorithmsRepresentation of Algorithms

Problem solving methods in this
Class

• 3 problem solving methods will be discussed
in this class are:

1.Develop Algorithms
 Flowchart
 Pseudo code

2.Top-down design
 Structured Chart

• 3 problem solving methods will be discussed
in this class are:

1.Develop Algorithms
 Flowchart
 Pseudo code

2.Top-down design
 Structured Chart

Algorithms

• Algorithm - a sequence of a finite number of steps arranged
in a specific logical order to produce the solution for a
problem.

• Algorithms requirements:
i. Must have input
ii. Must produce output
iii. Unambiguous
iv. Generality
v. Correctness
vi. Finiteness
vii. Efficiency

• Algorithm - a sequence of a finite number of steps arranged
in a specific logical order to produce the solution for a
problem.

• Algorithms requirements:
i. Must have input
ii. Must produce output
iii. Unambiguous
iv. Generality
v. Correctness
vi. Finiteness
vii. Efficiency

Pseudo code

• Pseudocode is a semiformal, English-like
language with limited vocabulary that
can be used to design & describe
algorithms.

• Purpose- to define the procedural logic of
an algorithm in a simple, easy-to-
understand for its readers.

• Free of syntactical complications of
programming language.

• Pseudocode is a semiformal, English-like
language with limited vocabulary that
can be used to design & describe
algorithms.

• Purpose- to define the procedural logic of
an algorithm in a simple, easy-to-
understand for its readers.

• Free of syntactical complications of
programming language.

Pseudo code

• Execution sequence follow the steps flow.
Example: Algorithm for
multiplying two numbers
1. Start
2. Get A
3. Get B
4. Calculate result

C=A*B
5. Display result C
6. End

• Execution sequence follow the steps flow.
Example: Algorithm for
multiplying two numbers
1. Start
2. Get A
3. Get B
4. Calculate result

C=A*B
5. Display result C
6. End

Execution
sequence

Exercise Week2_2

• Refer to Lab2, Exercise 1, No. 2.1.1-2.1.3 in pg.
17-19

1.Desk Check/Trace the algorithm
2.Complete the exercise

• Refer to Lab2, Exercise 1, No. 2.1.1-2.1.3 in pg.
17-19

1.Desk Check/Trace the algorithm
2.Complete the exercise

Flowchart

• Flowchart – a graph of geometrical
shapes that are connected by lines.

• 2 important element in flow chart:
1. geometrical shapes – represent type of

statements in the algorithm
2. Flow line – show the order in which the

statements of an algorithm are
executed.

• Flowchart – a graph of geometrical
shapes that are connected by lines.

• 2 important element in flow chart:
1. geometrical shapes – represent type of

statements in the algorithm
2. Flow line – show the order in which the

statements of an algorithm are
executed.

Flowchart

• Flowchart - Represents
an algorithm in graphical
symbols

Example: Algorithm
for multiplying

two numbers
• Desk Check/Trace the

algorithm!!!

S ta rt

S to p

G e t A
G e t B

D is p la y th e
R e s u lt C

C a lc u la te R e s u t
C = A *B

• Flowchart - Represents
an algorithm in graphical
symbols

Example: Algorithm
for multiplying

two numbers
• Desk Check/Trace the

algorithm!!!

S ta rt

S to p

G e t A
G e t B

D is p la y th e
R e s u lt C

C a lc u la te R e s u t
C = A *B

Flowchart Symbol
Terminal: Used to indicates the start and end of a flowchart. Single flowline. Only one “Start”
and “Stop” terminal for each program. The end terminal for function/subroutine must use
“Return” instead of “Stop”.

Process: Used whenever data is being manipulated. One flowline enters and one flowline exits.

Input/Output: Used whenever data is entered (input) or displayed (output). One flowline enters
and one flowline exits.

Decision: Used to represent operations in which there are two possible selections. One flowline
enters and two flowlines (labelled as “Yes” and “No”) exit.
Decision: Used to represent operations in which there are two possible selections. One flowline
enters and two flowlines (labelled as “Yes” and “No”) exit.

Function / Subroutine: Used to identify an operation in a separate flowchart segment (module).
One flowline enters and one flowline exits.

On-page Connector: Used to connect remote flowchart portion on the same page. One flowline
enters and one flowline exits.

Off-page Connector: Used to connect remote flowchart portion on different pages. One flowline
enters and one flowline exits.

Comment: Used to add descriptions or clarification.

Flowline: Used to indicate the direction of flow of control.

The Flowchart Explanation

S ta r t

S to p

R e a d A
R e a d B

D is p la y th e
R e s u lt C

C a lc u la te R e s u t
C = A * B

Start Terminal.
Program start
here

Input.
Enter values for
A and B

S ta r t

S to p

R e a d A
R e a d B

D is p la y th e
R e s u lt C

C a lc u la te R e s u t
C = A * B

Stop Terminal
Program end
here

Process

Output

Example: Use of
comments/description

Start

Read N,
 M

No

Yes

Stop

N = The number of students
M = The number of subjects

Start

Read N,
 M

No

Yes

Stop

N = The number of students
M = The number of subjects

Example: Use of connectors on
the same page.

Start

2

1

1 2

Stop

1- connection on the same
flowchart portion

2- connection on the different
flowchart portion

Start

2

1

1 2

Stop

1- connection on the same
flowchart portion

2- connection on the different
flowchart portion

Example: Use of connectors on
the different page.

Page 1 Page 2

Start

No

1

Yes 1

2

Stop

2

Start

No

1

Yes 1

2

Stop

2

Example: Function-call
example.

Note: Module = function = subroutinePage 1

AVRG (result, n1, n2,n3)

Start

Stop

Read
n1, n2 , n3

Print
result

Page 2

AVRG (result,n1, n2,n3)

Return

sum = n1+ n2+n3

result = sum/3

Start terminal for a
Function is different.
Do not use “Start”

The details (how the function works)
we put in another flowchart.
This also known as
Function-Definition

AVRG (result, n1, n2,n3)

Start

Stop

Read
n1, n2 , n3

Print
result

AVRG (result,n1, n2,n3)

Return

sum = n1+ n2+n3

result = sum/3

End terminal
must be “Return”

At this part,
we only know what
we want to do. But we
don’t know how to do it

This part also known as
Function-Call

Body of a function is
the same with
normal flowchart

Exercise Week2_3

• Refer to Lab 2, Exercise 1, No. 4-5 in pg. 24-25.
• Complete the exercise

Control Structure of AlgorithmsControl Structure of Algorithms

Control Structures

• Describe the flow of execution

• Basic types of control structure:
1. Sequential
2. Selection
3. Repetition

• Describe the flow of execution

• Basic types of control structure:
1. Sequential
2. Selection
3. Repetition

Sequential Structure

• A series of steps or statements that are executed in the
order they are written in an algorithm.

• Pseudo code - Mark the beginning & end of a block of
statements.

1. Start
2. Statement_1
3. Statement_2
4. Statement_3
n. Statement_n+1
N+1.End

• A series of steps or statements that are executed in the
order they are written in an algorithm.

• Pseudo code - Mark the beginning & end of a block of
statements.

1. Start
2. Statement_1
3. Statement_2
4. Statement_3
n. Statement_n+1
N+1.End

Sequential Structure – flow chart

• Multiple statements considered as one
statement

Statement simply means
command or instruction

statement

statement
statement



Statement simply means
command or instruction

Sequential Structure - trace
Start

Stop

Read
Length,
Width

Print
Area,

Perimeter

Calculate Area
Area=Length * Width

Calculate Perimeter
Perimeter=

2 * (Width+Length)

Input:
Length <- 5
Width <- 3

Process:
Area = 5 * 3 = 15

Start

Stop

Read
Length,
Width

Print
Area,

Perimeter

Calculate Area
Area=Length * Width

Calculate Perimeter
Perimeter=

2 * (Width+Length)

Process:
Perimeter =

2* (5+3) = 16
Output

Area: 15
Perimeter: 16

Sequential Structure – case study

• Case Study: Calculate the Payment• Case Study: Calculate the Payment

Exercise Week2_4

• Refer to Lab 2, Exercise 1 No. 1 & 2 in pg. 20.
• Discuss
• Convert to flow chart

• Refer to Lab 2, Exercise 1, No. 3 in pg. 21.
• Complete the exercise

• Refer to Lab 2, Exercise 1 No. 1 & 2 in pg. 20.
• Discuss
• Convert to flow chart

• Refer to Lab 2, Exercise 1, No. 3 in pg. 21.
• Complete the exercise

Selection Structure

Selection allows you to choose between two or
more alternatives; that is it allows you to make
decision.

Decisions made by a computer must be very
simple since everything in the computer ultimately
reduces to either true (1) or false (0).

If complex decisions are required, it is the
programmer’s job to reduce them to a series of
simple decisions that the computer can handle.

Selection allows you to choose between two or
more alternatives; that is it allows you to make
decision.

Decisions made by a computer must be very
simple since everything in the computer ultimately
reduces to either true (1) or false (0).

If complex decisions are required, it is the
programmer’s job to reduce them to a series of
simple decisions that the computer can handle.

Selection Structure – Problem
Examples

Problem 1: Determine whether profit, return capital or loss.

Problem 2: Determine whether a number is even or odd.

Problem 3: Determine whether the marks is less than 60%. If it is
less than 60, then print “fail”, otherwise print “pass”.

Problem 4: Determine whether the speed limit exceeds 110 km per
hour. If the speed exceeds 110, then fine = 300, otherwise fine = 0.
Display fine.

Problem 5: Determine whether the age is above 12 years old. If the
age is above 12, then ticket = 20, otherwise ticket = 10. Display ticket.

Problem 1: Determine whether profit, return capital or loss.

Problem 2: Determine whether a number is even or odd.

Problem 3: Determine whether the marks is less than 60%. If it is
less than 60, then print “fail”, otherwise print “pass”.

Problem 4: Determine whether the speed limit exceeds 110 km per
hour. If the speed exceeds 110, then fine = 300, otherwise fine = 0.
Display fine.

Problem 5: Determine whether the age is above 12 years old. If the
age is above 12, then ticket = 20, otherwise ticket = 10. Display ticket.

Selection Structure (cont..)

• Pseudo code – requires the use of the keywords if.

Algorithm: one choice selection
:
n. if condition

n.1 statement
n+1. end_if
:

Algorithm: one choice selection
:
n. if condition

n.1 statement
n+1. end_if
:

Selection Structure (cont..)

If

(one-choice)

condition
TRUE



“do or don’t”

condition

statement

FALSE  statement

If set condition is true, execute the
statement, else do nothing

°

Selection Structure (cont..)

• Pseudo code – requires the use of the keywords if and else.

Algorithm: two choices selection
:
n. if condition

n.1 statement
:

n+1. else
n+1.1 statement
:

n+2. end_if
:

Algorithm: two choices selection
:
n. if condition

n.1 statement
:

n+1. else
n+1.1 statement
:

n+2. end_if
:

Selection Structure (cont..)

If-else
(two-choices)

condition
TRUE FALSE

“do this or do that”

condition

Statement 2Statement 1

°

 statement

If set condition is true, execute the first
statement, else execute second statement

Selection Structure (cont..)

• Pseudo code – nested if.

Algorithm: nested if
:
n.if condition

:
n.m if condition

n.m.1 statement
:

n+1. end_if
:

Algorithm: nested if
:
n.if condition

:
n.m if condition

n.m.1 statement
:

n+1. end_if
:

Selection Structure (cont..)

Nested if
(if within if)

test1
FALSE

TRUE
test1

FALSE

TRUE

Considered as
one statement

test2

statement

°

°
FALSE

TRUE 

°

°

TRUE

it is an “one-choice” if

Selection Structure (cont..)

• Pseudo code – nested if using if-else & if.

Algorithm: if-else if
:
n.if condition

n.m if condition
n.m.1 statement
:

n+1 else
n+1.m.1 statement
:

n+2. end_if
:

Algorithm: if-else if
:
n.if condition

n.m if condition
n.m.1 statement
:

n+1 else
n+1.m.1 statement
:

n+2. end_if
:

Selection Structure (cont..)

Complex if-else & if Statements

x

condition

TRUE

FALSE

°

statement

condition

statement

°

statement TRUE

TRUE

FALSE

Considered as one statement

Relational Operators

• Used to compare numbers to determine
relative order

• Operators:

> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to
== Equal to
!= Not equal to

Relational Expressions

• Boolean expressions – true or false
• Examples:

12 > 5 is true
7 <= 5 is false

if x is 10, then
x == 10 is true,
x != 8 is true, and
x == 8 is false

• Boolean expressions – true or false
• Examples:

12 > 5 is true
7 <= 5 is false

if x is 10, then
x == 10 is true,
x != 8 is true, and
x == 8 is false

Logical Operators

• Used to create relational expressions from
other relational expressions

• Operators, meaning, and explanation:

&& AND New relational expression is true if both
expressions are true

|| OR New relational expression is true if either
expression is true

! NOT Reverses the value of an expression – true
expression becomes false, and false becomes
true

Logical Operators - examples

int x = 12, y = 5, z = -4;
(x > y) && (y > z) true

(x > y) && (z > y) false(x > y) && (z > y) false

(x <= z) || (y == z) false

(x <= z) || (y != z) true

!(x >= z) false

Exercise Week2_5

• Refer to Lab 3, Exercise 1, No. 2 in pg. 34.
• Draw flow chart symbol for the given

conditions

• Refer to Lab 3, Exercise 1, No. 2 in pg. 34.
• Draw flow chart symbol for the given

conditions

Selection Structure - trace

Start

Stop

Read Num

Print
"Category A"

Yes

Num>0? No

Print
"Category B"

Num = 10
10 > 0 ? => YES

Input:
Num <- 10

Enter a Number >> 10

Category A

Start

Stop

Read Num

Print
"Category A"

Yes

Num>0? No

Print
"Category B"

Output:
“Category A” What is the Output of the

following flowchart when the
input Num= 10

Selection Structure – trace (cont..)

Start

Stop

Read Num

Print
"Category A"

Yes

Num>0? No

Print
"Category B"

Num = 0
0 > 0 ? => NO

Output:
“Category B”

Input:
Num <- 0

Enter a Number >>0
Category B
Category A

Start

Stop

Read Num

Print
"Category A"

Yes

Num>0? No

Print
"Category B"

Output:
“Category A” What is the Output of the

following flowchart when the
input is Num= 0

Exercise Week2_6

• Refer to Lab 3, Exercise 2, No. 5 in pg. 40.
• Complete the exercise
• Refer to Lab 3, Exercise 2, No. 5 in pg. 40.
• Complete the exercise

Selection Structure – case study

• Case Study: Determine whether profit, return
capital or loss

• Case Study: Determine whether profit, return
capital or loss

Exercise Week2_7

• Refer to Lab 3, Exercise 3, No. 5(i) in pg. 42.
• Complete the exercise
• Refer to Lab 3, Exercise 3, No. 5(i) in pg. 42.
• Complete the exercise

Repetition Structure

• Specifies a block of one or more statements that
are repeatedly executed until a condition is
satisfied.

• Usually the loop has two important parts:
1. An expression that is tested for a true/false,
2. A statement or block that is repeated as long

as the expression is true
• 2 styles of repetition or loop

1. Pre-test loop
2. Post test loop

• Specifies a block of one or more statements that
are repeatedly executed until a condition is
satisfied.

• Usually the loop has two important parts:
1. An expression that is tested for a true/false,
2. A statement or block that is repeated as long

as the expression is true
• 2 styles of repetition or loop

1. Pre-test loop
2. Post test loop

Repetition Structure (cont..)

• Pseudo code – requires the use of the keywords while for pre-test loop.

Algorithm: one choice selection
:
n. While condition

n.1 statement
:

n+1. end_while
:

Algorithm: one choice selection
:
n. While condition

n.1 statement
:

n+1. end_while
:

Repetition Structure (cont..)
while Loop
(pre-test loop)

condition
FALSE

°

condition

statement

condition

body of loop 

While a set condition is true, repeat statement (body
of loop)

TRUE

FALSE
condition

Repetition Structure (cont..)

• Pseudo code – requires the use of the keywords repeat..until for
post-test loop.

Algorithm: one choice selection
:
n. Repeat

n.1 statement
:

n+1. until condition
:

Algorithm: one choice selection
:
n. Repeat

n.1 statement
:

n+1. until condition
:

Repetition Structure (cont..)
do-while Loop
(post-test loop)


statement

°

 statement

FALSE
TRUE

Do the statement (body of loop) while a
condition is true

statement

condition

Repetition Structure - Counters

Counter: Can be used to control execution of the loop (loop control
variable)

It will increment or decrement each time a loop repeats

Must be initialized before entering loop

Repetition Structure (cont..)

x

initialization

°
FALSE

cnt=0
°

Start

condition

body of loop

increment

y

FALSE

TRUE

°

cnt<5

cnt=cnt+1

FALSE

TRUE
Print
“dayang”

End

Repetition Structure (cont..)
What is the Output of the following flowchart when the input is Num= 4

Start

Stop

Print
Result

Result=Result + Count

Count=Count - 1

Initialize

Result=0
Count=Num

Count>0?

Read Num

No

Print Count

Yes

Input:
Num <- 4

Enter a Number =>4

Variables (in memory):

Num []
Result []
Count []

Variables (in memory):

Num [4]
Result []
Count []

Variables (in memory):

Num [4]
Result [0]
Count [4]

Variables (in memory):

Num [4]
Result [4] 0 + 4

Count [3] 4 - 1

Variables (in memory):

Num [4]
Result [7] 4 + 3

Count [2] 3 - 1

Variables (in memory):

Num [4]
Result [9] 7 + 2

Count [1] 2 - 1

Variables (in memory):

Num [4]
Result [10] 9 + 1

Count [0] 1 - 1

Start

Stop

Print
Result

Result=Result + Count

Count=Count - 1

Initialize

Result=0
Count=Num

Count>0?

Read Num

No

Print Count

Yes

Enter a Number =>4
Count = 4
4 > 0 ? => YES

Count: 4
Count: 3

Count = 3
3 > 0 ? => YES

Count: 2

Count = 2
2 > 0 ? => YES

Count: 1

Count = 1
1 > 0 ? => YES

Count: 0

Count = 0
0 > 0 ? => NO

Result: 10

Exercise Week2_8

• Refer to Lab 3, Exercise 2, No. 1 in pg. 37.
• Complete the exercise
• Refer to Lab 3, Exercise 2, No. 1 in pg. 37.
• Complete the exercise

Repetition Structure - Letting the
User Control a Loop

Program can be written so that user input determines loop repetition

Used when program processes a list of items, and user knows the number
of items

User is prompted before loop. Their input is used to control number of
repetitions

Program can be written so that user input determines loop repetition

Used when program processes a list of items, and user knows the number
of items

User is prompted before loop. Their input is used to control number of
repetitions

Repetition Structure (cont..)

cnt=0

°

Start

Get limit

°

cnt<limit

cnt=cnt+1

FALSE

TRUE
Print
“dayang”

End

Repetition Structure - Sentinels

sentinel: value in a list of values that indicates end of data

Special value that cannot be confused with a valid value, e.g., -999 for a
test score

Used to terminate input when user may not know how many values will be
entered

sentinel: value in a list of values that indicates end of data

Special value that cannot be confused with a valid value, e.g., -999 for a
test score

Used to terminate input when user may not know how many values will be
entered

Repetition Structure - Sentinels

Algorithm 3.3: Loop control by sentinel value
1. St art
2. Set repeat = 1
3. while (repeat = 1)

3.1 Read no1
3.2 Read no2
3.4 Print no1 + no2

3.5 Read repeat
4. end_while
5. End

Algorithm 3.3: Loop control by sentinel value
1. St art
2. Set repeat = 1
3. while (repeat = 1)

3.1 Read no1
3.2 Read no2
3.4 Print no1 + no2

3.5 Read repeat
4. end_while
5. End

Exercise Week2_9

• Refer to Lab 3, Exercise 2 No. 3, in pg. 39.
• Identify the sentinel value
• Complete the exercise

• Refer to Lab 3, Exercise 2 No. 3, in pg. 39.
• Identify the sentinel value
• Complete the exercise

Repetition Structure (cont..)
What is the Output of the following flowchart when the input is N = 6

AVRG (average, 10, 5, N)

Start

Stop

Read
N

Print
average

AVRG (result,n1, n2,n3)

Return

sum = n1+ n2+n3

result = sum/3

average

10
5

N=6

Sum = 10 + 5 + 6

Page 1

AVRG (average, 10, 5, N)

Start

Stop

Read
N

Print
average

Page 2

AVRG (result,n1, n2,n3)

Return

sum = n1+ n2+n3

result = sum/3

average =
21/3

Output:
Average: 7

Exercise Week2_10

• Refer to Lab 3, Exercise 3, No. 2 in pg. 41.
• Complete the exercise
• Refer to Lab 3, Exercise 3, No. 2 in pg. 41.
• Complete the exercise

Structure ChartStructure Chart

Control Structures

• Describe the flow of execution

• Basic types of control structure:
1. Sequential
2. Selection
3. Repetition

• Describe the flow of execution

• Basic types of control structure:
1. Sequential
2. Selection
3. Repetition

structure chart (cont..)

• Also called module chart, hierarchy chart - is a graphic
depiction of the decomposition of a problem.

• illustrates the partitioning of a problem into
subproblems and shows the hierarchical relationships
among the parts.

• It is a tool to aid in software design - aid the programmer
in dividing and conquering a large software problem, that
is, recursively breaking a problem down into parts that
are small enough to be understood by a human brain.

• The process is called top-down design, or functional
decomposition.

• Also called module chart, hierarchy chart - is a graphic
depiction of the decomposition of a problem.

• illustrates the partitioning of a problem into
subproblems and shows the hierarchical relationships
among the parts.

• It is a tool to aid in software design - aid the programmer
in dividing and conquering a large software problem, that
is, recursively breaking a problem down into parts that
are small enough to be understood by a human brain.

• The process is called top-down design, or functional
decomposition.

Structure chart (cont..)

Structured software follows rules:
1. Modules are arranged hierarchically.
2. There is only one root (i.e., top level) module.
3. Execution begins with the root module.
4. Program control must enter a module at its entry

point and leave at its exit point.
5. Control returns to the calling module when the

lower level module completes execution

Structured software follows rules:
1. Modules are arranged hierarchically.
2. There is only one root (i.e., top level) module.
3. Execution begins with the root module.
4. Program control must enter a module at its entry

point and leave at its exit point.
5. Control returns to the calling module when the

lower level module completes execution

Structure chart (cont..)

When designing structured software, three basic
constructs are represented :

1. Sequence - items are executed from top to bottom.
(PT1)

2. Repetition - a set of operations is repeated. (PT2)
3. Condition - a set of operations are executed only if a

certain condition or CASE statement applies.(PT2)

When designing structured software, three basic
constructs are represented :

1. Sequence - items are executed from top to bottom.
(PT1)

2. Repetition - a set of operations is repeated. (PT2)
3. Condition - a set of operations are executed only if a

certain condition or CASE statement applies.(PT2)

Structure chart (cont..)

Top- a box representing the
entire problem

Left-right on the chart is
irrelevant

Bottom- a number of boxes representing
the less complicated subproblems

A structure chart is (cont..)

• NOT a flowchart.

• It has nothing to do with the logical sequence
of tasks.

• It does NOT show the order in which tasks are
performed.

• It does NOT illustrate an algorithm

• NOT a flowchart.

• It has nothing to do with the logical sequence
of tasks.

• It does NOT show the order in which tasks are
performed.

• It does NOT illustrate an algorithm

Example ATM Machine structure chart

Common Errors in Structure Charts

Structure chart– revisit case study

• Case Study: Calculate the Payment• Case Study: Calculate the Payment

Exercise Week2_11

• Refer to Lab 2, Exercise 3, No. 5 in pg. 28-29.
• Complete the exercise
• Refer to Lab 2, Exercise 3, No. 5 in pg. 28-29.
• Complete the exercise

Thank You

Q & A

