
Input & Output Operations

Programming Techniques I
SCJ1013

Dr Masitah Ghazali

Formatting Output

Formatting Output

• Can control how output displays for numeric,
string data:
– size
– position
– number of digits

• Requires iomanip header file

• Can control how output displays for numeric,
string data:
– size
– position
– number of digits

• Requires iomanip header file

Formatting Output

• Used to control how an output field is displayed

• Some affect just the next value displayed:
– setw(x): print in a field at least x spaces wide.

Use more spaces if field is not wide enough

• Used to control how an output field is displayed

• Some affect just the next value displayed:
– setw(x): print in a field at least x spaces wide.

Use more spaces if field is not wide enough

Formatting Output – setw(n)
• Default setw is to the right
• Can be written as:

cout<< left;
cout<< setw(10) <<n;

OR
cout<< setw(-10) <<n;

• Example
cout<< "Enter an integer:";
cin>>n;

cout<<n<<endl;
cout<< setw(6) <<n<<endl;
cout<< setw(-6) <<n<<endl;

• Default setw is to the right
• Can be written as:

cout<< left;
cout<< setw(10) <<n;

OR
cout<< setw(-10) <<n;

• Example
cout<< "Enter an integer:";
cin>>n;

cout<<n<<endl;
cout<< setw(6) <<n<<endl;
cout<< setw(-6) <<n<<endl;

Enter an integer: 5
5
-----5
5

Formatting Output - example

Formatting Output - example

Stream Manipulators

• Some affect values until changed again:
– fixed: use decimal notation for floating-point

values
– setprecision(x): when used with fixed,

print floating-point value using x digits after the
decimal. Without fixed, print floating-point value
using x significant digits

– showpoint: always print decimal for floating-
point values

• Some affect values until changed again:
– fixed: use decimal notation for floating-point

values
– setprecision(x): when used with fixed,

print floating-point value using x digits after the
decimal. Without fixed, print floating-point value
using x significant digits

– showpoint: always print decimal for floating-
point values

Formatting Output – fixed

• Always print out 6 digits after the
decimal notation

cout << "input one floating number: ";
cin >> f;
cout << fixed << f << endl;

• Always print out 6 digits after the
decimal notation

cout << "input one floating number: ";
cin >> f;
cout << fixed << f << endl;

Enter a floating number: 3.1
3.100000

Enter a floating number: 3.4565679
3.456568

Enter one double number: 1234.567
1234.567000

Enter one double number: 1234567.4
1234567.400000

Formatting Output – setprecision(x)

• When used without fixed, print floating-point
value using xsignificant digits

cout << "enter one double number: ";
cin >> d;
cout << d << endl;
cout << setprecision(5) << d << endl;

• When used without fixed, print floating-point
value using xsignificant digits

cout << "enter one double number: ";
cin >> d;
cout << d << endl;
cout << setprecision(5) << d << endl;

Enter one double number: 3.1
3.1

Enter one double number: 1234567.4
1.2346e+006

Enter one double number: 1234.567
1234.6

Formatting Output – setprecision(x)
with fixed

• when used with fixed, print floating-point
value using x digits after the decimal.

cout << "enter one double number: ";
cin >> d;
cout << d << endl;
cout << fixed << setprecision(3) << d << endl;

• when used with fixed, print floating-point
value using x digits after the decimal.

cout << "enter one double number: ";
cin >> d;
cout << d << endl;
cout << fixed << setprecision(3) << d << endl;

Enter one double number: 1234.567
1234.567

Enter one double number: 3.1
3.100

Enter one double number: 1234567.4
1234567.400

Formatting Output – showpoint

• always print decimal for floating-point values

cout << "input one floating number: ";
cin >> f;
cout << showpoint << f << endl;

• always print decimal for floating-point values

cout << "input one floating number: ";
cin >> f;
cout << showpoint << f << endl;

Enter a floating number: 3.1
3.10000

Enter a floating number: 3.4565679
3.45657

Enter one double number: 1234.567
1234.57

Enter one double number: 1234567.4
1.23457e+006

Stream Manipulators – example

Stream Manipulators – example

Stream Manipulators

Exercise Week 6_1

• Refer to Exercise 2 No. 3 in pg. 76.
• Solve the problem

• Refer back to Exercise 3 No. 3 in pg. 80.
• Solve the problem by setting the output to 2

decimal places.

• Refer to Exercise 2 No. 3 in pg. 76.
• Solve the problem

• Refer back to Exercise 3 No. 3 in pg. 80.
• Solve the problem by setting the output to 2

decimal places.

Formatted Input

Formatted Input

• Can format field width for use with cin
• Useful when reading string data to be stored in a

character array:
const int SIZE = 10;
char firstName[SIZE];
cout << "Enter your name: ";
cin >> setw(SIZE) >> firstName;

• cin reads one less character than specified with
the setw() manipulator

• Can format field width for use with cin
• Useful when reading string data to be stored in a

character array:
const int SIZE = 10;
char firstName[SIZE];
cout << "Enter your name: ";
cin >> setw(SIZE) >> firstName;

• cin reads one less character than specified with
the setw() manipulator

Formatted Input

• To read an entire line of input, use
cin.getline():

const int SIZE = 81;
char address[SIZE];
cout << "Enter your address: ";
cin.getline(address, SIZE);

• cin.getline takes two arguments:
– Name of array to store string
– Size of the array

• To read an entire line of input, use
cin.getline():

const int SIZE = 81;
char address[SIZE];
cout << "Enter your address: ";
cin.getline(address, SIZE);

• cin.getline takes two arguments:
– Name of array to store string
– Size of the array

Formatted Input

Exercise Week 6_2

• Write C++ program to
solve the flow chart. START

Read name

Display name, address1 and address2

END

Read address1

Read address2

Formatted Input

• To read a single character:
– Use cin:

char ch;
cout << "Strike any key to continue";
cin >> ch;
Problem: will skip over blanks, tabs, <CR>

– Use cin.get():
cin.get(ch);
Will read the next character entered, even whitespace

• To read a single character:
– Use cin:

char ch;
cout << "Strike any key to continue";
cin >> ch;
Problem: will skip over blanks, tabs, <CR>

– Use cin.get():
cin.get(ch);
Will read the next character entered, even whitespace

Exercise Week 6_3

• Refer to Exercise 2 No. 1 in pg. 74.

• What will be displayed if the following
characters are entered in Program 6.2 & 6.3?
Explain the program output with the following
input.

AV
TY

• Refer to Exercise 2 No. 1 in pg. 74.

• What will be displayed if the following
characters are entered in Program 6.2 & 6.3?
Explain the program output with the following
input.

AV
TY

Formatted Input

• Mixing cin >> and cin.get() in the same
program can cause input errors that are hard to
detect

• To skip over unneeded characters that are still in the
keyboard buffer, use cin.ignore():
cin.ignore(); // skip next char
cin.ignore(10, '\n'); // skip the next

// 10 char. or until a '\n'

• Mixing cin >> and cin.get() in the same
program can cause input errors that are hard to
detect

• To skip over unneeded characters that are still in the
keyboard buffer, use cin.ignore():
cin.ignore(); // skip next char
cin.ignore(10, '\n'); // skip the next

// 10 char. or until a '\n'

Hand Tracing a Program

Hand Tracing a Program

• Hand trace a program: act as if you are the
computer, executing a program:
– step through and ‘execute’ each statement, one-

by-one
– record the contents of variables after statement

execution, using a hand trace chart (table)
• Useful to locate logic or mathematical errors

• Hand trace a program: act as if you are the
computer, executing a program:
– step through and ‘execute’ each statement, one-

by-one
– record the contents of variables after statement

execution, using a hand trace chart (table)
• Useful to locate logic or mathematical errors

Hand Tracing a Program

Exercise Week 6_4

• Trace the following programs
void main(){//Prog 6_42

int n, m, x, y;
m=10;
n=m*2/(m+2);
m%=n+2;
cout <<"n: "<<n;
cout <<"\nm: "<<m;

x=4;
y=x*2+10%3-1*x;
x*=(y/m);
cout<<"\nx: "<< x;
cout<<"\ny: "<<y;
getch();

}

void main(){ //Prog 6_41
int x, y, z;

x =10; y = 17;
z = x + y;
y = y - x;
cout<<"x: "<<x<< " y: “

<<y<<" z: "<<z;
x = y * z;
z = x / 20;
y = z % x;

cout<<"\nx: "<<x<< " y: “
<<y<<" z: "<<z;

getch();
}

• Trace the following programs
void main(){//Prog 6_42

int n, m, x, y;
m=10;
n=m*2/(m+2);
m%=n+2;
cout <<"n: "<<n;
cout <<"\nm: "<<m;

x=4;
y=x*2+10%3-1*x;
x*=(y/m);
cout<<"\nx: "<< x;
cout<<"\ny: "<<y;
getch();

}

void main(){ //Prog 6_41
int x, y, z;

x =10; y = 17;
z = x + y;
y = y - x;
cout<<"x: "<<x<< " y: “

<<y<<" z: "<<z;
x = y * z;
z = x / 20;
y = z % x;

cout<<"\nx: "<<x<< " y: “
<<y<<" z: "<<z;

getch();
}

Introduction to File Input and Output

Introduction to File Input and
Output

• Can use files instead of keyboard, monitor
screen for program input, output

• Allows data to be retained between program
runs

• Steps:
– Open the file
– Use the file (read from, write to, or both)
– Close the file

• Can use files instead of keyboard, monitor
screen for program input, output

• Allows data to be retained between program
runs

• Steps:
– Open the file
– Use the file (read from, write to, or both)
– Close the file

Files: What is Needed

• Use fstream header file for file access
• File stream types:

ifstream for input from a file
ofstream for output to a file
fstream for input from or output to a file

• Define file stream objects:
ifstream infile;
ofstream outfile;

• Use fstream header file for file access
• File stream types:

ifstream for input from a file
ofstream for output to a file
fstream for input from or output to a file

• Define file stream objects:
ifstream infile;
ofstream outfile;

Opening Files

• Create a link between file name (outside the
program) and file stream object (inside the program)

• Use the open member function:
infile.open("inventory.dat");
outfile.open("report.txt");

• Filename may include drive, path info.
• Output file will be created if necessary; existing file

will be erased first
• Input file must exist for open to work

• Create a link between file name (outside the
program) and file stream object (inside the program)

• Use the open member function:
infile.open("inventory.dat");
outfile.open("report.txt");

• Filename may include drive, path info.
• Output file will be created if necessary; existing file

will be erased first
• Input file must exist for open to work

Using Files

• Can use output file object and << to send data
to a file:
outfile << "Inventory report";

• Can use input file object and >> to copy data
from file to variables:
infile >> partNum;
infile >> qtyInStock >> qtyOnOrder;

• Can use output file object and << to send data
to a file:
outfile << "Inventory report";

• Can use input file object and >> to copy data
from file to variables:
infile >> partNum;
infile >> qtyInStock >> qtyOnOrder;

Closing Files

• Use the close member function:
infile.close();
outfile.close();

• Don’t wait for operating system to close files at
program end:
– may be limit on number of open files
– may be buffered output data waiting to send to file

• Use the close member function:
infile.close();
outfile.close();

• Don’t wait for operating system to close files at
program end:
– may be limit on number of open files
– may be buffered output data waiting to send to file

Closing Files - example

Closing Files - example

Closing Files - example

Closing Files - example

Exercise Week 6_5

• Refer to Exercise 2 No. 2 (i-iv) in pg. 75-76.

• Solve the problem

• Refer to Exercise 2 No. 2 (i-iv) in pg. 75-76.

• Solve the problem

Thank You

Q & A

