
Making Decisions

Programming Techniques I
SCJ1013

Dr Masitah Ghazali



Relational Operators & Logical Operators



Relational Operators

• Used to compare numbers to determine
relative order

• Operators:

> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to
== Equal to
!= Not equal to



Relational Expressions

• Boolean expressions – true or false
• Examples:

12 > 5 is true
7 <= 5 is false

if x is 10, then
x == 10 is true,
x != 8 is true, and
x == 8 is false

• Boolean expressions – true or false
• Examples:

12 > 5 is true
7 <= 5 is false

if x is 10, then
x == 10 is true,
x != 8 is true, and
x == 8 is false



Relational Expressions

• Can be assigned to a variable:
result = x <= y;

• Assigns 0 for false, 1 for true
• Do not confuse = and ==

• Can be assigned to a variable:
result = x <= y;

• Assigns 0 for false, 1 for true
• Do not confuse = and ==



Logical Operators

• Used to create relational expressions from
other relational expressions

• Operators, meaning, and explanation:

&& AND New relational expression is true if
both expressions are true

|| OR New relational expression is true if
either expression is true

! NOT Reverses the value of an expression –
true expression becomes false, and
false becomes true



Logical Operators - examples

int x = 12, y = 5, z = -4;
(x > y) && (y > z) true
(x > y) && (z > y) false(x > y) && (z > y) false
(x <= z) || (y == z) false
(x <= z) || (y != z) true
!(x >= z) false



• What will the following program display?

int main(){
int a=0, b = 2, x = 4, y=0;

cout << (a == b) << endl;
cout << (a != y)<< endl;
cout<< (b <= x) <<endl;
cout << (y > a) << endl;

return 0;
}

Exercise Week 7_1

int main(){
int a=0, b = 2, x = 4, y=0;

cout << (a == b) << endl;
cout << (a != y)<< endl;
cout<< (b <= x) <<endl;
cout << (y > a) << endl;

return 0;
}



The if Statement



The if Statement

• Allows statements to be conditionally
executed or skipped over

• Models the way we mentally evaluate
situations:
– "If it is raining, take an umbrella."
– "If it is cold outside, wear a coat."

• Allows statements to be conditionally
executed or skipped over

• Models the way we mentally evaluate
situations:
– "If it is raining, take an umbrella."
– "If it is cold outside, wear a coat."



Flowchart for Evaluating a Decision



Flowchart for Evaluating a Decision



The if Statement

• General Format:

if (expression)
statement;

• General Format:

if (expression)
statement;



if statement – what happens

To evaluate:
if (expression)
statement;

• If the expression is true, then
statement is executed.

• If the expressionis false, then
statement is skipped.

To evaluate:
if (expression)
statement;

• If the expression is true, then
statement is executed.

• If the expressionis false, then
statement is skipped.



if statement – example

(Program Continues)



if statement – example



Flowchart for Lines 21 and 22



if statement notes

• Do not place ; after (expression)
• Place statement; on a separate line

after (expression), indented:
if (score > 90)

grade = 'A';
• Be careful testing floats and doubles

for equality
• 0 is false; any other value is true

• Do not place ; after (expression)
• Place statement; on a separate line

after (expression), indented:
if (score > 90)

grade = 'A';
• Be careful testing floats and doubles

for equality
• 0 is false; any other value is true



• Refer to Lab 7, Exe 1 No. 13(i) in pg. 88.
• Explain and draw the flowchart

Exercise Week 7_2



Flags



Flags

• Variable that signals a condition
• Usually implemented as a bool variable
• As with other variables in functions, must be

assigned an initial value before it is used

• Variable that signals a condition
• Usually implemented as a bool variable
• As with other variables in functions, must be

assigned an initial value before it is used



• Trace the following programs if the input is 22 and 68
int main()
{

double mark;
bool pass=false; //this conditon does not yet exist

cout<<"Enter your mark>>";
cin>>mark;

if (mark >=30)
pass=true;

if (pass)
cout<<"You pass the test"<<endl;

if (!pass)
cout<<"You fail the test"<<endl;

cout<<"Program end";

return 0;
}

Exercise Week 7_3

int main()
{

double mark;
bool pass=false; //this conditon does not yet exist

cout<<"Enter your mark>>";
cin>>mark;

if (mark >=30)
pass=true;

if (pass)
cout<<"You pass the test"<<endl;

if (!pass)
cout<<"You fail the test"<<endl;

cout<<"Program end";

return 0;
}



Expanding the if Statement



Expanding the if Statement

• To execute more than one statement as part of an if
statement, enclose them in { }:
if (score > 90)
{

grade = 'A';
cout << "Good Job!\n";

}
• { } creates a block of code

• To execute more than one statement as part of an if
statement, enclose them in { }:
if (score > 90)
{

grade = 'A';
cout << "Good Job!\n";

}
• { } creates a block of code



• Identify the logic errors, and correct them
• The program will display “Pass” message, calculate the carry mark and

display the carry mark if the student pass the test.
• If the student fail the test the program will display “Fail” message and

display a message to instruct the student to re-sit the test
int main()
{

double mark, final20p = 0;

cout << “Enter your mark >> “;
cin >> mark;

if (mark >= 30)
cout << “TEST 1 -> Pass” << endl;
final20p = ((20.0/100.0) * mark);

cout << “Contribution to final mark “ << final20p;
if (mark < 30)

cout << “TEST 1 -> Fail” << endl;
cout << “Please re-sit TEST 1” << endl;

system (“pause”);
return 0;

}

Exercise Week 7_4 (Solve the
problem)

int main()
{

double mark, final20p = 0;

cout << “Enter your mark >> “;
cin >> mark;

if (mark >= 30)
cout << “TEST 1 -> Pass” << endl;
final20p = ((20.0/100.0) * mark);

cout << “Contribution to final mark “ << final20p;
if (mark < 30)

cout << “TEST 1 -> Fail” << endl;
cout << “Please re-sit TEST 1” << endl;

system (“pause”);
return 0;

}



The if/else Statement



The if/else Statement

• Provides two possible paths of execution
• Performs one statement or block if the
expression is true, otherwise performs
another statement or block.

• Provides two possible paths of execution
• Performs one statement or block if the
expression is true, otherwise performs
another statement or block.



The if/else Statement

• General Format:
if (expression)
statement1;  // or block
else
statement2;  // or block

• General Format:
if (expression)
statement1;  // or block
else
statement2;  // or block



if/else – what happens

To evaluate:
if (expression)
statement1;
else
statement2;

• If the expression is true, then statement1 is
executed and statement2 is skipped.

• If the expression is false, then statement1
is skipped and statement2 is executed.

To evaluate:
if (expression)
statement1;
else
statement2;

• If the expression is true, then statement1 is
executed and statement2 is skipped.

• If the expression is false, then statement1
is skipped and statement2 is executed.



if/else – example



Flowchart for Lines 14 through 18



if/else – example

(Program Continues)



if/else – example



• Refer back to Lab 7, Exe 2, No. 13, pg. 88.
• Solve the problem in (ii) and (iii)

Exercise Week 7_5



The if/else if Statement



The if/else if Statement

• Chain of if statements that test in order until
one is found to be true

• Also models thought processes:
– “If it is raining, take an umbrella,

else, if it is windy, take a hat,
else, take sunglasses”

• Chain of if statements that test in order until
one is found to be true

• Also models thought processes:
– “If it is raining, take an umbrella,

else, if it is windy, take a hat,
else, take sunglasses”



if/else if format

if (expression)
statement1;  // or block
else if (expression)
statement2;  // or block

.

. // other else ifs

.
else if (expression)
statementn;  // or block

if (expression)
statement1;  // or block
else if (expression)
statement2;  // or block

.

. // other else ifs

.
else if (expression)
statementn;  // or block



if/else if format - example

(Program Continues)



if/else if format - example



• Refer to Lab 7, Exe 1, No. 11 in pg. 86.
• Draw a flowchart for Program 7.1
• Refer to Lab 7, Exe 1, No. 17 in pg. 91.
• Draw a flowchart for Program 7.4

• Discuss the differences.

Exercise Week 7_6
• Refer to Lab 7, Exe 1, No. 11 in pg. 86.
• Draw a flowchart for Program 7.1
• Refer to Lab 7, Exe 1, No. 17 in pg. 91.
• Draw a flowchart for Program 7.4

• Discuss the differences.



Using a Trailing else



Using a Trailing else

• Used with if/else if statement when
none of the expressions are true

• Provides default statement/action
• Used to catch invalid values, other exceptional

situations

• Used with if/else if statement when
none of the expressions are true

• Provides default statement/action
• Used to catch invalid values, other exceptional

situations



From Program 4-12



Menus



Menus

• Menu-driven program: program execution
controlled by user selecting from a list of
actions

• Menu: list of choices on the screen
• Menus can be implemented using if/else
if statements

• Menu-driven program: program execution
controlled by user selecting from a list of
actions

• Menu: list of choices on the screen
• Menus can be implemented using if/else
if statements



Menu-driven program organization

• Display list of numbered or lettered choices for
actions

• Prompt user to make selection
• Test user selection in expression

– if a match, then execute code for action
– if not, then go on to next expression

• Display list of numbered or lettered choices for
actions

• Prompt user to make selection
• Test user selection in expression

– if a match, then execute code for action
– if not, then go on to next expression



• Refer to Lab 7, Exe. 1, No. 19, Program 7.5. in pg. 95.
• Use if / else….if to select the menu

• Use trailing else to print “We don’t have any”

Jump to ‘switch’ – slide 81

Exercise Week 7_7

• Refer to Lab 7, Exe. 1, No. 19, Program 7.5. in pg. 95.
• Use if / else….if to select the menu

• Use trailing else to print “We don’t have any”



Nested if Statements



Nested if Statements

• An if statement that is part of the if or
else part of another if statement

• Can be used to evaluate more than one
condition:

if (score < 100)
{

if (score > 90)
grade = 'A';

}

• An if statement that is part of the if or
else part of another if statement

• Can be used to evaluate more than one
condition:

if (score < 100)
{

if (score > 90)
grade = 'A';

}



Notes on coding nested ifs

• An else matches the nearest if that does
not have an else:
if (score < 100)

if (score > 90)
grade = 'A';

else ...// goes with second if,
// not first one

• Proper indentation helps greatly

• An else matches the nearest if that does
not have an else:
if (score < 100)

if (score > 90)
grade = 'A';

else ...// goes with second if,
// not first one

• Proper indentation helps greatly



• Write nested if statements that perform the following test:

If amount1 is greater than 10 and amount2 is less than 100, display the
greater of the two.

Exercise Week 7_8
• Write nested if statements that perform the following test:

If amount1 is greater than 10 and amount2 is less than 100, display the
greater of the two.



Logical Operators



Logical Operators

• Used to create relational expressions from
other relational expressions

• Operators, meaning, and explanation:

&& AND New relational expression is true if
both expressions are true

|| OR New relational expression is true if
either expression is true

! NOT Reverses the value of an expression –
true expression becomes false, and
false becomes true



Logical Operators - examples

int x = 12, y = 5, z = -4;
(x > y) && (y > z) true
(x > y) && (z > y) false(x > y) && (z > y) false
(x <= z) || (y == z) false
(x <= z) || (y != z) true
!(x >= z) false



The && Operator in Program 4-16



The || Operator in Program 4-17



The ! Operator in Program 4-18



Logical Operators - notes
• ! has highest precedence, followed by &&, then
||

• If the value of an expression can be determined
by evaluating just the sub-expression on left side
of a logical operator, then the sub-expression on
the right side will not be evaluated (short circuit
evaluation)
!(x > 2)
!x > 2

• ! has highest precedence, followed by &&, then
||

• If the value of an expression can be determined
by evaluating just the sub-expression on left side
of a logical operator, then the sub-expression on
the right side will not be evaluated (short circuit
evaluation)
!(x > 2)
!x > 2



Checking Numeric Ranges with Logical Operators



Checking Numeric Ranges with Logical
Operators

• Used to test to see if a value falls inside a range:
if (grade >= 0 && grade <= 100)

cout << "Valid grade";
• Can also test to see if value falls outside of range:

if (grade <= 0 || grade >= 100)
cout << "Invalid grade";

• Cannot use mathematical notation:
if (0 <= grade <= 100) //doesn’t work!

• Used to test to see if a value falls inside a range:
if (grade >= 0 && grade <= 100)

cout << "Valid grade";
• Can also test to see if value falls outside of range:

if (grade <= 0 || grade >= 100)
cout << "Invalid grade";

• Cannot use mathematical notation:
if (0 <= grade <= 100) //doesn’t work!



Validating User Input



Validating User Input

• Input validation: inspecting input data to
determine whether it is acceptable

• Bad output will be produced from bad input
• Can perform various tests:

– Range
– Reasonableness
– Valid menu choice
– Divide by zero

• Input validation: inspecting input data to
determine whether it is acceptable

• Bad output will be produced from bad input
• Can perform various tests:

– Range
– Reasonableness
– Valid menu choice
– Divide by zero



From Program 4-19



More About Variable Definitions and Scope



More About Variable Definitions
and Scope

• Scope of a variable is the block in which it is
defined, from the point of definition to the
end of the block

• Usually defined at beginning of function
• May be defined close to first use

• Scope of a variable is the block in which it is
defined, from the point of definition to the
end of the block

• Usually defined at beginning of function
• May be defined close to first use



From Program 4-21



Still  More About Variable
Definitions and Scope

• Variables defined inside { } have local or
block scope

• When inside a block within another block,
can define variables with the same name as
in the outer block.
– When in inner block, outer definition is not

available
– Not a good idea

• Variables defined inside { } have local or
block scope

• When inside a block within another block,
can define variables with the same name as
in the outer block.
– When in inner block, outer definition is not

available
– Not a good idea



• What will the following program display if user enter test1 40 and test2
30?

if (sum>60)   {
int bonus=10;
test1+=bonus; test2+=bonus;
int sum=test1+test2;
cout<<"Test 1 with bonus:“
<<test1<<endl;
cout<<"Test 2 with bonus:“
<<test2<<endl;
cout<<"Sum with bonus:“
<<sum<<endl;
}
cout<<"Test 1 : “
<<test1<<endl;
cout<<"Test 2 : “
<<test2<<endl;
cout<<"Sum : "<<sum<<endl;
return 0;
}

int main ()
{
int test1;
cout<<"Enter Test 1 score: ";
cin>>test1;

int test2;
cout<<"Enter Test 2 score: ";
cin>>test2;

int sum=test1+test2;

Exercise Week 7_9

if (sum>60)   {
int bonus=10;
test1+=bonus; test2+=bonus;
int sum=test1+test2;
cout<<"Test 1 with bonus:“
<<test1<<endl;
cout<<"Test 2 with bonus:“
<<test2<<endl;
cout<<"Sum with bonus:“
<<sum<<endl;
}
cout<<"Test 1 : “
<<test1<<endl;
cout<<"Test 2 : “
<<test2<<endl;
cout<<"Sum : "<<sum<<endl;
return 0;
}

int main ()
{
int test1;
cout<<"Enter Test 1 score: ";
cin>>test1;

int test2;
cout<<"Enter Test 2 score: ";
cin>>test2;

int sum=test1+test2;



Comparing Strings



Comparing Strings

• You cannot use relational operators with C-
strings

• Must use the strcmp function to compare C-
strings

• strcmp compares the ASCII codes of the
characters in the C-strings.  Comparison is
character-by-character

• You cannot use relational operators with C-
strings

• Must use the strcmp function to compare C-
strings

• strcmp compares the ASCII codes of the
characters in the C-strings.  Comparison is
character-by-character



Comparing Strings

The expression
strcmp(str1, str2)
compares thestrings str1 and str2

• It returns 0 if the strings are the same
• It returns a negative number  if str1 < str2
• It returns a positive number if str1 > str2

The expression
strcmp(str1, str2)
compares thestrings str1 and str2

• It returns 0 if the strings are the same
• It returns a negative number  if str1 < str2
• It returns a positive number if str1 > str2



Comparing Strings - example



Comparing Strings - example



• Refer back to Lab 7, Exe. 19, Program 7.5 in pg. 95.
• Change the program that you wrote in Exercise Week 7_7 :

– Change variable choice to variable
iceCream[20]

– Instead of using menu, use getline so the
user can enter the flavor and use strcmp to
if / else…if statement.

Exercise Week 7_10
• Refer back to Lab 7, Exe. 19, Program 7.5 in pg. 95.
• Change the program that you wrote in Exercise Week 7_7 :

– Change variable choice to variable
iceCream[20]

– Instead of using menu, use getline so the
user can enter the flavor and use strcmp to
if / else…if statement.



The Conditional Operator



The Conditional Operator

• Can use to create short if/else statements
• Format: expr ? expr : expr;

x<0 ? y=10 : z=20;

First Expression:
Expression to be
tested

2nd Expression:
Executes if first
expression is true

3rd Expression:
Executes if the first
expression is false



The Conditional Operator

• The value of a conditional expression is
– The value of the second expression if the first

expression is true
– The value of the third expression if the first

expression is false
• Parentheses () may be needed in an

expression due to precedence of conditional
operator

• The value of a conditional expression is
– The value of the second expression if the first

expression is true
– The value of the third expression if the first

expression is false
• Parentheses () may be needed in an

expression due to precedence of conditional
operator



The Conditional Operator
• Condition operator vs if/else statements

(x<0)?(y=10):(z=20);
if (x<0)
y=10;

else
z=20;

if (x<0)
y=10;

else
z=20;

a=x>100?0:1;
if (x>100)
a=0;

else
a=1;

cout<<“Your grade is “
<< ((score<60)? “FAIL”:
“Pass”);

if (score<60)
cout<<“Your grade is FAIL”;
else
cout<<“Your grade is PASS”;



The Conditional Operator -
example



• Rewrite the following
if/else statements as
conditional expressions

if (x>y)
z = 1;

else
z = 20;

if (hours> 40)
wages *= 1.5;

else
wages *= 1;

if (result >= 0)
cout «"The result is +ve";
else
cout «"The result is -ve";

• Rewrite the following
conditional expressions as
if/else statements

j = k > 90 ? 57 : 12;

total += count == 1 ? sales :
count * sales;

cout « (((num % 2) == 0) ?
"Even\n" : "Odd\n");

Exercise Week 7_11

if (x>y)
z = 1;

else
z = 20;

if (hours> 40)
wages *= 1.5;

else
wages *= 1;

if (result >= 0)
cout «"The result is +ve";
else
cout «"The result is -ve";

j = k > 90 ? 57 : 12;

total += count == 1 ? sales :
count * sales;

cout « (((num % 2) == 0) ?
"Even\n" : "Odd\n");



The switch Statement



The switch Statement

• Used to select among statements from several
alternatives

• In some cases, can be used instead of
if/else if statements

• Used to select among statements from several
alternatives

• In some cases, can be used instead of
if/else if statements



switch statement format

switch (expression) //integer
{
case exp1: statement1;
case exp2: statement2;
...
case expn: statementn;
default: statementn+1;

}

switch (expression) //integer
{
case exp1: statement1;
case exp2: statement2;
...
case expn: statementn;
default: statementn+1;

}



switch statement - example



switch statement requirements

1) expressionmust be an integer variable
or an expression that evaluates to an integer
value

2) exp1 through expnmust be constant
integer expressions or literals, and must be
unique in the switch statement

3) default is optional but recommended

1) expressionmust be an integer variable
or an expression that evaluates to an integer
value

2) exp1 through expnmust be constant
integer expressions or literals, and must be
unique in the switch statement

3) default is optional but recommended



switch statement – how it works

1) expression is evaluated
2) The value of expression is compared against
exp1 through expn.

3) If expressionmatches value expi, the
program branches to the statement following
expi and continues to the end of the switch

4) If no matching value is found, the program
branches to the statement after default:

1) expression is evaluated
2) The value of expression is compared against
exp1 through expn.

3) If expressionmatches value expi, the
program branches to the statement following
expi and continues to the end of the switch

4) If no matching value is found, the program
branches to the statement after default:



break statement

• Used to exit a switch statement
• If it is left out, the program "falls through" the

remaining statements in the switch
statement

• Used to exit a switch statement
• If it is left out, the program "falls through" the

remaining statements in the switch
statement



break statement - example



break statement - example



Using switch with a menu

• switch statement is a natural choice for
menu-driven program:
– display the menu
– then, get the user's menu selection
– use user input as expression in switch

statement
– use menu choices as expr in case statements

• switch statement is a natural choice for
menu-driven program:
– display the menu
– then, get the user's menu selection
– use user input as expression in switch

statement
– use menu choices as expr in case statements



From Program 4-32

Back to slide 47



• Change Program 7.5 in pg. 63 to :

– Input 1=> Output :Muhammad’s favorite
Ismael’s favorite

– Input 3=> Output :Adibah’s favorite Munirah’s
favorite

– Input 2 => Output :Ismael’s favorite
– Input 4 => Output :Munirah’s favorite

Exercise Week 7_12
• Change Program 7.5 in pg. 63 to :

– Input 1=> Output :Muhammad’s favorite
Ismael’s favorite

– Input 3=> Output :Adibah’s favorite Munirah’s
favorite

– Input 2 => Output :Ismael’s favorite
– Input 4 => Output :Munirah’s favorite



Testing for File Open Errors



Testing for File Open Errors

• Can test a file stream object to detect if an
open operation failed:
infile.open("test.txt");
if (!infile)
{
cout << "File open failure!";

}
• Can also use the fail member function

• Can test a file stream object to detect if an
open operation failed:
infile.open("test.txt");
if (!infile)
{
cout << "File open failure!";

}
• Can also use the fail member function



• Refer to Program 6.4 in pg. 74.
• Modify the program to detect if the open files operation failed.

Exercise Week 7_13
• Refer to Program 6.4 in pg. 74.
• Modify the program to detect if the open files operation failed.



Thank You

Q & A


