
Arrays

Programming Techniques I
SCJ1013

Dr Masitah Ghazali

Arrays Hold Multiple Values

Arrays Hold Multiple Values

• Array: variable that can store multiple values
of the same type

• Values are stored in adjacent memory
locations

• Declared using [] operator:
int tests[5];

• Array: variable that can store multiple values
of the same type

• Values are stored in adjacent memory
locations

• Declared using [] operator:
int tests[5];

Array - Memory Layout

• The definition:
int tests[5];

allocates the following memory:

first
element

second
element

third
element

fourth
element

fifth
element

Array Terminology

In the definition int tests[5];
• int is the data type of the array elements
• tests is the name of the array
• 5, in [5], is the size declarator. It shows

the number of elements in the array.
• The size of an array is (number of elements) *

(size of each element)

In the definition int tests[5];
• int is the data type of the array elements
• tests is the name of the array
• 5, in [5], is the size declarator. It shows

the number of elements in the array.
• The size of an array is (number of elements) *

(size of each element)

Array Terminology

• The size of an array is:
– the total number of bytes allocated for it
– (number of elements) * (number of bytes for each

element)
• Examples:

int tests[5] is an array of 20 bytes, assuming 4
bytes for an int

long double measures[10]is an array of 80
bytes, assuming 8 bytes for a long double

• The size of an array is:
– the total number of bytes allocated for it
– (number of elements) * (number of bytes for each

element)
• Examples:

int tests[5] is an array of 20 bytes, assuming 4
bytes for an int

long double measures[10]is an array of 80
bytes, assuming 8 bytes for a long double

Size Declarators

• Named constants are commonly used as size
declarators.

const int SIZE = 5;
int tests[SIZE];

• This eases program maintenance when the
size of the array needs to be changed.

• Named constants are commonly used as size
declarators.

const int SIZE = 5;
int tests[SIZE];

• This eases program maintenance when the
size of the array needs to be changed.

Accessing Array Elements

Accessing Array Elements

• Each element in an array is assigned a unique
subscript.

• Subscripts start at 0

• Each element in an array is assigned a unique
subscript.

• Subscripts start at 0

0 1 2 3 4
subscripts:

Accessing Array Elements

• The last element’s subscript is n-1 where n is
the number of elements in the array.

0 1 2 3 4
subscripts:

Accessing Array Elements

• Array elements can be used as regular variables:
tests[0] = 79;
cout << tests[0];
cin >> tests[1];
tests[4] = tests[0] + tests[1];

• Arrays must be accessed via individual elements:
cout << tests; // not legal

• Array elements can be used as regular variables:
tests[0] = 79;
cout << tests[0];
cin >> tests[1];
tests[4] = tests[0] + tests[1];

• Arrays must be accessed via individual elements:
cout << tests; // not legal

Accessing Array Elements -
example

(Program Continues)

Accessing Array Elements -
example

Here are the contents of the hours array, with the values
entered by the user in the example output:

Accessing Array Contents

• Can access element with a constant or literal
subscript:
cout << tests[3] << endl;

• Can use integer expression as subscript:
int i = 5;
cout << tests[i] << endl;

• Can access element with a constant or literal
subscript:
cout << tests[3] << endl;

• Can use integer expression as subscript:
int i = 5;
cout << tests[i] << endl;

Using a Loop to Step Through an
Array

• Example – The following code defines an
array, numbers, and assigns 99 to each
element:

const int ARRAY_SIZE = 5;
int numbers[ARRAY_SIZE];

for (int count = 0; count < ARRAY_SIZE; count++)
numbers[count] = 99;

A Closer Look At the Loop

Default Initialization

• Global array all elements initialized to 0 by
default

• Local array all elements uninitialized by
default

• Global array all elements initialized to 0 by
default

• Local array all elements uninitialized by
default

• Refer to Lab 12, Exercise 1 No. 1 in pg.
172.

• Discuss

Exercise Week 15_1

• Refer to Lab 12, Exercise 1 No. 1 in pg.
172.

• Discuss

No Bounds Checkingin C++

No Bounds Checking in C++

• When you use a value as an array subscript,
C++ does not check it to make sure it is a valid
subscript.

• In other words, you can use subscripts that
are beyond the bounds of the array.

• When you use a value as an array subscript,
C++ does not check it to make sure it is a valid
subscript.

• In other words, you can use subscripts that
are beyond the bounds of the array.

Code From Program 7-5

• The following code defines a three-element
array, and then writes five values to it!

What the Code Does

No Bounds Checking in C++

• Be careful not to use invalid subscripts.
• Doing so can corrupt other memory locations,

crash program, or lock up computer, and
cause elusive bugs.

• Be careful not to use invalid subscripts.
• Doing so can corrupt other memory locations,

crash program, or lock up computer, and
cause elusive bugs.

Off-By-One Errors

• An off-by-one error happens when you use
array subscripts that are off by one.

• This can happen when you start subscripts at
1 rather than 0:

• An off-by-one error happens when you use
array subscripts that are off by one.

• This can happen when you start subscripts at
1 rather than 0:

// This code has an off-by-one error.
const int SIZE = 100;
int numbers[SIZE];
for (int count = 1; count <= SIZE; count++)

numbers[count] = 0;

• Correct the errors in the following program

#include <iostream>

int main(){
int SIZE=5;
int arr[SIZE];

// to store value 1 4 9 16 25 in arr
for (int i=1;i<=5;i++)

arr[i]=i*i;

cout<<"arr5="<<arr[5];

return 0;
}

Exercise Week 15_2

#include <iostream>

int main(){
int SIZE=5;
int arr[SIZE];

// to store value 1 4 9 16 25 in arr
for (int i=1;i<=5;i++)

arr[i]=i*i;

cout<<"arr5="<<arr[5];

return 0;
}

7.4
Array Initialization

Array Initialization

• Arrays can be initialized with an initialization
list:

const int SIZE = 5;
int tests[SIZE] = {79,82,91,77,84};

• The values are stored in the array in the
order in which they appear in the list.

• The initialization list cannot exceed the array
size.

• Arrays can be initialized with an initialization
list:

const int SIZE = 5;
int tests[SIZE] = {79,82,91,77,84};

• The values are stored in the array in the
order in which they appear in the list.

• The initialization list cannot exceed the array
size.

Code From Program 7-6

Partial Array Initialization

• If array is initialized with fewer initial values
than the size declarator, the remaining
elements will be set to 0:

Implicit Array Sizing

• Can determine array size by the size of the
initialization list:
int quizzes[]={12,17,15,11};

• Must use either array size declarator or
initialization list at array definition

• Can determine array size by the size of the
initialization list:
int quizzes[]={12,17,15,11};

• Must use either array size declarator or
initialization list at array definition

12 17 15 11

Initializing With a String

• Character array can be initialized by enclosing
string in " ":
const int SIZE = 6;
char fName[SIZE] = "Henry";

• Must leave room for \0 at end of array
• If initializing character-by-character, must add

in \0 explicitly:
char fName[SIZE] =
{ 'H', 'e', 'n', 'r', 'y', '\0'};

• Character array can be initialized by enclosing
string in " ":
const int SIZE = 6;
char fName[SIZE] = "Henry";

• Must leave room for \0 at end of array
• If initializing character-by-character, must add

in \0 explicitly:
char fName[SIZE] =
{ 'H', 'e', 'n', 'r', 'y', '\0'};

• Are each of the following valid or invalid array
definitions? (If a definition is invalid, explain
why)

int numbers[l0] = {0, 0, 1, 0, 0, 1, 0, 0, 1, 1};
int matrix[5] = {1, 2, 3, 4, 5, 6, 7};
double radix[10] = {3.2, 4.7};
int table[7] = {2, , , 27, , 45, 39};
char codes [] = {‘A', 'X', '1', '2', 's'};
int blanks[];
char name[6] = "Joanne";

• Refer to Lab 13, Exe. 2, No. 4i-v in pg. 178.
• Solve the problem

Exercise Week 15_3
• Are each of the following valid or invalid array

definitions? (If a definition is invalid, explain
why)

int numbers[l0] = {0, 0, 1, 0, 0, 1, 0, 0, 1, 1};
int matrix[5] = {1, 2, 3, 4, 5, 6, 7};
double radix[10] = {3.2, 4.7};
int table[7] = {2, , , 27, , 45, 39};
char codes [] = {‘A', 'X', '1', '2', 's'};
int blanks[];
char name[6] = "Joanne";

• Refer to Lab 13, Exe. 2, No. 4i-v in pg. 178.
• Solve the problem

Processing Array Contents

Processing Array Contents

• Array elements can be treated as ordinary
variables of the same type as the array

• When using ++, -- operators, don’t confuse
the element with the subscript:
tests[i]++; // add 1 to tests[i]
tests[i++]; // increment i, no

// effect on tests

• Array elements can be treated as ordinary
variables of the same type as the array

• When using ++, -- operators, don’t confuse
the element with the subscript:
tests[i]++; // add 1 to tests[i]
tests[i++]; // increment i, no

// effect on tests

• Given the following array definition:

int values[] = {2, 6, 10, 14};
• What do each of the following display?

a. cout<< values[2];
b. cout << ++values[0];
c. cout << values[1]++;
d. x = 2; cout << values[++x];

Exercise Week 15_4
• Given the following array definition:

int values[] = {2, 6, 10, 14};
• What do each of the following display?

a. cout<< values[2];
b. cout << ++values[0];
c. cout << values[1]++;
d. x = 2; cout << values[++x];

Array Assignment

To copy one array to another,
• Don’t try to assign one array to the other:

newTests = tests; // Won't work

• Instead, assign element-by-element:
for (i = 0; i < ARRAY_SIZE; i++)

newTests[i] = tests[i];

To copy one array to another,
• Don’t try to assign one array to the other:

newTests = tests; // Won't work

• Instead, assign element-by-element:
for (i = 0; i < ARRAY_SIZE; i++)

newTests[i] = tests[i];

Printing the Contents of an Array

• You can display the contents of a character
array by sending its name to cout:

char fName[] = "Henry";
cout << fName << endl;

But, this ONLY works with character arrays!

• You can display the contents of a character
array by sending its name to cout:

char fName[] = "Henry";
cout << fName << endl;

But, this ONLY works with character arrays!

Printing the Contents of an Array

• For other types of arrays, you must print
element-by-element:

for (i = 0; i < ARRAY_SIZE; i++)
cout << tests[i] << endl;

• For other types of arrays, you must print
element-by-element:

for (i = 0; i < ARRAY_SIZE; i++)
cout << tests[i] << endl;

Summing and Averaging Array
Elements

• Use a simple loop to add together array
elements:
int tnum;
double average, sum = 0;
for(tnum = 0; tnum < SIZE; tnum++)

sum += tests[tnum];
• Once summed, can compute average:

average = sum / SIZE;

• Use a simple loop to add together array
elements:
int tnum;
double average, sum = 0;
for(tnum = 0; tnum < SIZE; tnum++)

sum += tests[tnum];
• Once summed, can compute average:

average = sum / SIZE;

Finding the Highest Value in an
Array

int count;
int highest;
highest = numbers[0];
for (count = 1; count < SIZE; count++)
{

if (numbers[count] > highest)
highest = numbers[count];

}

int count;
int highest;
highest = numbers[0];
for (count = 1; count < SIZE; count++)
{

if (numbers[count] > highest)
highest = numbers[count];

}

When this code is finished, the highest variable will contain
the highest value in the numbers array.

Finding the Lowest Value in an
Array

int count;
int lowest;
lowest = numbers[0];
for (count = 1; count < SIZE; count++)
{

if (numbers[count] < lowest)
lowest = numbers[count];

}

int count;
int lowest;
lowest = numbers[0];
for (count = 1; count < SIZE; count++)
{

if (numbers[count] < lowest)
lowest = numbers[count];

}

When this code is finished, the lowest variable will contain
the lowest value in the numbers array.

Partially-Filled Arrays

• If it is unknown how much data an array
will be holding:
– Make the array large enough to hold the

largest expected number of elements.
– Use a counter variable to keep track of the

number of items stored in the array.

• If it is unknown how much data an array
will be holding:
– Make the array large enough to hold the

largest expected number of elements.
– Use a counter variable to keep track of the

number of items stored in the array.

Comparing Arrays
• To compare two arrays, you must compare

element-by-element:
const int SIZE = 5;
int firstArray[SIZE] = { 5, 10, 15, 20, 25 };
int secondArray[SIZE] = { 5, 10, 15, 20, 25 };
bool arraysEqual = true; // Flag variable
int count = 0; // Loop counter variable
// Compare the two arrays.
while (arraysEqual && count < SIZE)
{

if (firstArray[count] != secondArray[count])
arraysEqual = false;

count++;
}
if (arraysEqual)

cout << "The arrays are equal.\n";
else

cout << "The arrays are not equal.\n";

const int SIZE = 5;
int firstArray[SIZE] = { 5, 10, 15, 20, 25 };
int secondArray[SIZE] = { 5, 10, 15, 20, 25 };
bool arraysEqual = true; // Flag variable
int count = 0; // Loop counter variable
// Compare the two arrays.
while (arraysEqual && count < SIZE)
{

if (firstArray[count] != secondArray[count])
arraysEqual = false;

count++;
}
if (arraysEqual)

cout << "The arrays are equal.\n";
else

cout << "The arrays are not equal.\n";

• Write C++ statements to perform each of the
following:
I. Declare an array of variable number to

allocate 10 elements
II. Read 10 data to assign value into array

number
III. Assign value of number [3] into number [4]

and number [4] takes value of number [5].

Exercise Week 15_5 (pg 172, Q2)

• Write C++ statements to perform each of the
following:
I. Declare an array of variable number to

allocate 10 elements
II. Read 10 data to assign value into array

number
III. Assign value of number [3] into number [4]

and number [4] takes value of number [5].

Using Parallel Arrays

Using Parallel Arrays

• Parallel arrays: two or more arrays that
contain related data

• A subscript is used to relate arrays: elements
at same subscript are related

• Arrays may be of different types

• Parallel arrays: two or more arrays that
contain related data

• A subscript is used to relate arrays: elements
at same subscript are related

• Arrays may be of different types

Parallel Array Example
const int SIZE = 5; // Array size

int id[SIZE]; // student ID
double average[SIZE]; // course average
char grade[SIZE]; // course grade
...
for(int i = 0; i < SIZE; i++){

cout << "Student ID: " << id[i]
<< " average: " << average[i]
<< " grade: " << grade[i]
<< endl;
}

const int SIZE = 5; // Array size
int id[SIZE]; // student ID
double average[SIZE]; // course average
char grade[SIZE]; // course grade
...
for(int i = 0; i < SIZE; i++){

cout << "Student ID: " << id[i]
<< " average: " << average[i]
<< " grade: " << grade[i]
<< endl;
}

Parallel Array Example

(Program Continues)

Program 7-12 (Continued)

Parallel Array Example

The hours and payRate arrays are related through their
subscripts:

Parallel Array Example

The hours and payRate arrays are related through their
subscripts:

• What is the output of the following code? (You may need to use a calculator.)
.

const int SIZE = 5;
int time[SIZE] = {1, 2, 3, 4, 5},
speed[SIZE] = {18, 4, 27, 52, 100},
dist[SIZE];

for (int count = 0; count < SIZE; count++)
dist[count] = time[count] * speed[count];

for (int count = 0; count < SIZE; count++) {
cout << time[count] << " ";
cout << speed[count] << " ";
cout « dist[count] << endl;

}

Exercise Week 15_6
• What is the output of the following code? (You may need to use a calculator.)

.

const int SIZE = 5;
int time[SIZE] = {1, 2, 3, 4, 5},
speed[SIZE] = {18, 4, 27, 52, 100},
dist[SIZE];

for (int count = 0; count < SIZE; count++)
dist[count] = time[count] * speed[count];

for (int count = 0; count < SIZE; count++) {
cout << time[count] << " ";
cout << speed[count] << " ";
cout « dist[count] << endl;

}

Arrays as Function Arguments

Arrays as Function Arguments

• To pass an array to a function, just use the
array name:
showScores(tests);

• To define a function that takes an array
parameter, use empty [] for array argument:
void showScores(int []);

// function prototype
void showScores(int tests[])

// function header

• To pass an array to a function, just use the
array name:
showScores(tests);

• To define a function that takes an array
parameter, use empty [] for array argument:
void showScores(int []);

// function prototype
void showScores(int tests[])

// function header

Arrays as Function Arguments

• When passing an array to a function, it is
common to pass array size so that function
knows how many elements to process:
showScores(tests, ARRAY_SIZE);

• Array size must also be reflected in prototype,
header:
void showScores(int [], int);

// function prototype
void showScores(int tests[], int
size)

// function header

• When passing an array to a function, it is
common to pass array size so that function
knows how many elements to process:
showScores(tests, ARRAY_SIZE);

• Array size must also be reflected in prototype,
header:
void showScores(int [], int);

// function prototype
void showScores(int tests[], int
size)

// function header

Arrays as Function Arguments -
example

(Program Continues)

Program 7-14 (Continued)

Arrays as Function Arguments -
example

Modifying Arrays in Functions

• Array names in functions are like reference
variables – changes made to array in a function
are reflected in actual array in calling function

• Need to exercise caution that array is not
inadvertently changed by a function

• Array names in functions are like reference
variables – changes made to array in a function
are reflected in actual array in calling function

• Need to exercise caution that array is not
inadvertently changed by a function

• The following program skeleton, when completed, will ask
the user to enter 10 integers which are stored in an array.
The function avgArray, which you must write, is to
calculate and return the average of the numbers entered.

#include <iostream>
//Write your function prototype here
int main() {

const int SIZE = 10;
int userNums[SIZE];
cout << "Enter 10 numbers: ";
for (int count = 0; count < SIZE; count++){

cout << "#" « (count + 1) << " ";
cin >> userNums[count];

}
cout << "The average of those numbers is ";
cout << avgArray(userNUms, SIZE) << endl;
return 0;

}
//Write the function avgArray here.

Exercise Week 15_7
• The following program skeleton, when completed, will ask

the user to enter 10 integers which are stored in an array.
The function avgArray, which you must write, is to
calculate and return the average of the numbers entered.

#include <iostream>
//Write your function prototype here
int main() {

const int SIZE = 10;
int userNums[SIZE];
cout << "Enter 10 numbers: ";
for (int count = 0; count < SIZE; count++){

cout << "#" « (count + 1) << " ";
cin >> userNums[count];

}
cout << "The average of those numbers is ";
cout << avgArray(userNUms, SIZE) << endl;
return 0;

}
//Write the function avgArray here.

Exercise - additional

• Write a program that has a function that
returns the index of the smallest element in
an array of integers. If there are more than
one such elements, return the smallest index.
Use {1,2,4,5,10,100,2,-22} to test the function.

• Write a program that has a function that
returns the index of the smallest element in
an array of integers. If there are more than
one such elements, return the smallest index.
Use {1,2,4,5,10,100,2,-22} to test the function.

Thank You

Q & A

