Statics SKMM1203

Friction

Brief introduction to Friction

Pinciple of dry friction

$N=W$
No Friction, $F=0$

$N=W$
$F=\mu_{s} N$ if $F<F_{m}$ (body in equilibrium)
$F=\mu_{s} N$ if $F=F_{m}$ (motion impending)
$F=\mu_{k} N$ if $F>F_{m}$ (body in motion)

Relationship between applied force P and friction force F
where,
$F_{m}=$ maximum static friction force
$F_{k}=$ kinetic friction force
$\mu_{s}=$ coefficient of static friction
$\mu_{k}=$ coefficient of kinetic friction
$N=$ normal force

- Friction force is independent of surface area of contact but dependent on the roughness of surface area in contact
- Static friction, F is directly proportional to the normal force, N.

QUESTION 1

Determine magnitude and direction of the friction force

SOLUTION

N

$$
\begin{aligned}
& (+\rightarrow) \Sigma F_{x}=0 \\
& \mu_{s} N+100 \cos 30=0 \ldots \ldots \ldots \text { (1) } \\
& (+\uparrow) \Sigma F_{y}=0 \\
& N-40(9.8)+100 \sin 30=0 \ldots \ldots \text { (2) } \\
& N=342 N
\end{aligned}
$$

Substitute into (1) for friction force $F=\mu_{s} N$

$$
\begin{aligned}
F & =(0.3)(342) \\
& =102.6 \mathrm{~N}
\end{aligned}
$$

QUESTION 2

a. Determine the coeffic ient of statics friction μ_{s} if the minimum force required to stop the block from sliding down the inclined surface is $P=40 \mathrm{~N}$
b. If the coeffic ients of statics and kinetics friction between the block a nd the surface are $\mu_{\mathrm{s}}=0.5$ and $\mu_{\mathrm{k}}=0.4$ respectively, and $P=200 \mathrm{~N}$, detemine the magnitude and direction of the friction force.

$$
g=10 \mathrm{~m} / \mathrm{s}^{2}
$$

SOWIION

(a)

$(\pm 7) \Sigma F_{x}=0$
$(\pm 7) \Sigma F_{x}=0$
$\mu_{s} N-22(10)(3 / 5)+40(4 / 5)=0$
$\mu_{s} N-22(10)(3 / 5)+40(4 / 5)=0$
$(+\nwarrow) \Sigma F_{y}=0$
$(+\nwarrow) \Sigma F_{y}=0$
$\mathrm{N}-22(10)(4 / 5)-40(3 / 5)=0 \ldots(2)$
$\mathrm{N}-22(10)(4 / 5)-40(3 / 5)=0 \ldots(2)$
$\mathrm{N}=200 \mathrm{~N}$
$\mathrm{N}=200 \mathrm{~N}$
Substitute into (1)
Substitute into (1)
$\mu_{s}(200)-22(10)(3 / 5)+40(4 / 5)=0$
$\mu_{s}(200)-22(10)(3 / 5)+40(4 / 5)=0$
$\mu_{\mathrm{s}}=0.5$
$\mu_{\mathrm{s}}=0.5$
(b)


```
Assume the direction of friction force \(F\) is in \(+x\)-dir
(+ \(\left.{ }^{7}\right) \Sigma F_{x}=0\)
\(F-22(10)(3 / 5)+200(4 / 5)=0 \ldots . .(1)\)
\(F=-28 \mathrm{~N}\) (Actual direction is opposite to the assumption)
\((+\mathbb{R}) \Sigma F_{y}=0\)
\(\mathrm{N}-22(10)(4 / 5)-200(3 / 5)=0 \ldots .(2)\)
\(\mathrm{N}=296 \mathrm{~N}\)
Maximum static friction \(F_{m}=\mu_{s} \mathrm{~N}\)
    \(F_{m}=(0.5)(296)\)
    \(=148 \mathrm{~N}\)
```

Since $F<F_{m}$, the object is in equilibrium. Thus the magnitude and direction of friction force is $28 \mathrm{~N} \swarrow$ (-x direction)

QUESTION 3

Two blocks A and B of mass 200 kg and 100 kg respectively are placed in contact with each other as shown. Determine the minimum force P required to maintain equilibrium if the coefficient of friction between all contacting surfaces is $\mu=0.3$.

SOLIION

blockA

$$
\begin{aligned}
& (+\rightarrow) \Sigma F_{x}=0 \\
& N_{2} \sin 60^{\circ}-0.3 N_{2} \cos 60^{\circ}-N_{1}=0 \\
& 0.866 N_{2}-0.15 N_{2}-N_{1}=0 \\
& N_{1}=0,716 N_{2} \\
& (+\uparrow) \Sigma F_{y}=0 \\
& N_{2} \cos 60^{\circ}+0.3 N_{2} \sin 60^{\circ}+0.3 N_{1}-100 \mathrm{~g}=0 \\
& 0.5 N_{2}+0.26 N_{2}+0.3 N_{1}-100 \mathrm{~g}=0 \\
& 0.76 N_{2}+0.3\left(0.716 N_{2}\right)-200 \mathrm{~g}=0 \\
& N_{2}=2012 \mathrm{~N}
\end{aligned}
$$

block B

$$
\begin{aligned}
& \left((+\uparrow) \Sigma F_{y}=0\right. \\
& N_{3}-N_{2} \cos 60^{\circ}-0.3 N_{2} \sin 60^{\circ}-100 \mathrm{~g}=0 \\
& N_{3}-1006-523-100 \mathrm{~g}=0 \\
& N_{3}=2510 \mathrm{~N} \\
& (+\rightarrow) \Sigma F_{x}=0 \\
& P+0.3 N_{3}+0.3 N_{2} \cos 60^{\circ}-N_{2} \sin 60^{\circ}=0 \\
& P+753+302-1742=0 \\
& P=687 \mathrm{~N}
\end{aligned}
$$

QUESTION 4

Blocks A of mass 14.4 kg and B of mass 7.2 kg are connected by a cable that passes over smooth pulley C. If the coeffic ient of static friction at all surfaces of contact are $\mu_{\mathrm{s}}=0.12$, determine the sma llest value of P for which equilibrium is mainta ined. Determine also the tension in the cable, T.

blockA

$$
\begin{align*}
& (+\rightarrow) \Sigma F_{x}=0 \\
& N_{1}-N_{2}=0 \ldots \ldots(1) \\
& (+\uparrow) \Sigma F_{y}=0 \\
& \mu_{s} N_{1}+\mu_{s} N_{2}+T-14.4(9.8)=0 \tag{2}
\end{align*}
$$

blockB

(3) - (2)

$$
\begin{aligned}
& -\mu_{s} N_{2}-7.2(9.8)-\mu_{s} N_{1}-\mu_{s} N_{2}+14.4(9.8)=0 \\
& \text { From (1) } N_{1}=N_{2}, \text { thus } \\
& -\mu_{s} N_{2}-7.2(9.8)-\mu_{s} N_{2}-\mu_{s} N_{2}+14.4(9.8)=0 \\
& 3 \mu_{s} N_{2}=70.56 \\
& N_{2}=196 \mathrm{~N}=N_{2}
\end{aligned}
$$

$$
\begin{align*}
& (+\uparrow) \Sigma F_{y}=0 \\
& T-\mu_{s} N_{2}-7.2(9.8)=0 \tag{3}\\
& (+\rightarrow) \Sigma F_{x}=0 \\
& N_{2}-P=0 \ldots \ldots . .(4)
\end{align*}
$$

From (4), $P=N_{2}=196 \mathrm{~N}$
From (3),
$T-\mu_{s} N_{2}-7.2(9.8)=0$
$T=0.12(196)+7.2(9.8)$
$=94.08 \mathrm{~N}$

