

## Well Test Interpretation SKM4323

# CONVENTIONAL INTERPRETATION METHODS

Azmi Mohd Arshad

Department of Petroleum Engineering



#### **OPENCOURSEWARE**

#### **WEEK 03**





#### Drawdown Test

 The equation that describes pressure variations versus time and distance from the well after opening the well at a constant flow rate, q, is given by:

$$p_{i} - p(r,t) = -\frac{qB\mu}{4\pi kh} Ei \left(\frac{-r^{2}}{4Kt}\right)$$
 (4.1)

with

$$K = \frac{k}{\phi \mu c_t}$$





- When the pressure is measured in the well where the flow rate disturbance is located,  $r = r_w$ .
- As soon as  $r_w^2/4Kt < 10^{-2}$ , which usually occurs before the wellbore storage effect is over, the Ei function can be replaced by its logarithmic approximation:

$$p_{i} - p_{wf}(t) = -\frac{qB\mu}{4\pi kh} \left( ln \frac{Kt}{r_{w}^{2}} + 0.81 \right)$$
 (4.2)





 Taking pressure drops in the skin into account, this expression becomes:

$$p_{i} - p_{wf}(t) = -\frac{qB\mu}{4\pi kh} \left( ln \frac{Kt}{r_{w}^{2}} + 0.81 + 2S \right)$$
 (4.3)





- It can also be written in other equivalent forms:
  - in practical US units:

$$p_{i} - p_{wf}(t) = -\frac{162.6 \,qB\mu}{kh} \left( \log t + \log \frac{k}{\phi \,\mu c_{t} r_{w}^{2}} - 3.23 + 0.87 \,S \right)$$
 (4.4)

– in practical metric units:

$$p_{i} - p_{wf}(t) = -\frac{21.5 \,qB\mu}{kh} \left( \log t + \log \frac{k}{\phi \,\mu c_{t} r_{w}^{2}} - 3.10 + 0.87 \,S \right)$$
 (4.5)

— as a dimensionless equation:

$$p_D = \frac{1}{2} (\ln t_D + 0.81 + 2S)$$





#### Interpretation

- Equation (4.2) to (4.6) show that bottomhole pressure varies logarithmically versus time.
- If the pressure measured at the bottom of the hole is plotted on a graph versus the logarithm of time, a straight line with a slope of m can be observed once the wellbore storage effect has ended:

$$m = \frac{162.6 \text{ qB}\mu}{\text{kh}}$$
 (in practical US units) (4.4)

$$m = \frac{21.5 \text{ qB}\mu}{1.1}$$
 (in practical metric units) (4.8)





#### Interpretation

• The slope, m, is used to determine the reservoir's kh:

$$kh = \frac{2.303 \text{ qB}\mu}{4\pi \text{ m}}$$
 (in SI units) (4.9)

$$kh = \frac{162.6 \text{ qB}\mu}{m}$$
 (in practical US units) (4.10)

$$kh = \frac{21.5 \text{ qB}\mu}{m}$$
 (in practical metric units) (4.11)





#### Interpretation

 The skin value is usually computed using the pressure measurement at 1 hour on the semi-log straight line; for this point log t = 0.

-in practical US units

$$S=1.151 \left( \frac{p_{i}-p_{1h}}{m} - \log \frac{k}{\phi \mu c_{t} r_{w}^{2}} + 3.23 \right)$$
 (4.12)

-in practical metric units

$$S=1.151 \left( \frac{p_{i}-p_{1h}}{m} - \log \frac{k}{\phi \mu c_{t} r_{w}^{2}} + 3.23 \right)$$
 (4.13)





Fig. 4.1





#### Interpretation

- Care must be taken to read the pressure at 1 hour on the semi-log straight line and not by interpolating among the measurement points.
- After one hour the data may still be affected by the wellbore storage effect. In this case, they do not verify the semi-log straight line equation.



## Example 1

(In-class workshop)



#### References

- 1. Bourdarot, Gilles: Well Testing: Interpretation Methods, Éditions Technip, 1998.
- 2. Internet.

