

HIGHWAY ENGINEERING SAB2832

ROAD CONSTRUCTION

CHE ROS ISMAIL (FKA, UTM)

OCWUTM_CRI2011

Inspiring Creative and Innovative Minds

ocw.utm.my

ROAD CONSTRUCTION

- 1. **REVIEW MATERIALS**
- 2. INTRODUCTION
- 3. SURVEY AND ALIGNMENT
- 4. SITE CLEARING
- 5. EARTHWORK
- 6. DRAINAGE WORK
- 7. PAVEMENT WORK
- 8. FINISHING

	STAR REBAULANN ATA BARISAN NASIONA	
8	JKR	
	JABATAN KERJA RAYA MALAYSIA	
	PROJEK : PROJEK MEMBINA PERSIMPANGAN BERTINGKAT SKUDAI, JOHOR BAHRU, JOHOR DARUL TAKZIM.	
	PEGAWAI PENGUASA : PEJABAT PENGARAH KERJA RAYA, JKR NEGERI JOHOR, PEJABAT PENGARAH KERJA RAYA JOHOR, ARAS 3. BANGUNAN SULTAN IBRAHIM PETI SURAT 709, 80520 JOHOR BAHRU, JOHOR DARUL TAKZIM.	
	PENOLONG PEGAWAI : KETUA PENOLONG PENGARAH JALAN, JKR NEGERI JOHOR, PEJABAT PENOARAH KERJA RAYA JOHOR, ARAS 3, BANGUMAN SULTAN IBRAHIM, PETI SURAT 709, 80520 JOHOR BAHRU, JOHOR DARUL TAKZIM.	
	JURUTERA PERUNDING : JURUTERA PERUNDING ZAINAL & MOHAMAD SON BHD NO. 24-01, JALAN TITIWANGSA 3, TAMAN TAMPOI INDAH, 81200 JOHOR BAHRU, JOHOR DARUL TAKZIM.	
	KONTRAKTOR : BUDAYA RESTU SDN BHD NO. 60A, JALAN RENANG 13/28, SEKSYEN 13, 40100 SHAH ALAM, SELANGOR DARUL EHSAN.	
	TARIKH MILIK TAPAK : 17–10–2005 TARIKH SIAP : 15–04–2007	
	JASA KEPADA RAKYAT	

INTRODUCTION

- Aspects to be considered in road construction:
- Terrain capacity, cost, speed, earthwork
- Soil properties cost, treatment
- Environmental impact minimize
- Economy and socio-economy cost & benefit, finance
- Politics involve other country
- Historical heritage building, cemetery

SURVEYING & ALIGNMENT 1

- Involve measurement of angle, distance and height
- Data used to produce maps, contour, and other related drawings
- Five types of drawing in road works:
- 1. <u>Map</u> scale 1:50,000 to 1:1250
- Plan produced form site survey, showing project location, drawn on 1:500 to 1:50 scale

SURVEYING & ALIGNMENT 2

- Longitudinal section showing ground levels along road CL, same scale as plan & drawn on the same sheet. Vertical scale usually exaggerated for ease of use.
- <u>Cross section</u> at bigger scale, numbered for reference according to <u>chainage</u>, compiled togeter under seperate drawing sheets.
- 5. <u>Detail drawings</u> showing all details clearly, scale from 1:20 to 1:1, e.g culvert detail, pipe, retaining wall, etc.

SURVEYING & ALIGNMENT 3

- Surveying techniques have drastically changed with the aids of modern equipments and <u>computer softwares</u>.
- Generally there are four major processes:
- Reconnaissance survey of the entire area planning (<u>aerial</u> <u>photo</u>)
- 2. Reconnaissance survey of feasible route planning
- 3. Preliminary survey of the best route data used to produce map, plans, section drawings, etc.
- Location survey ang site setting out setting out points on site according to drawings e.g ROW, alignment, CL, leveling, etc.

SURVEY

SITE CLEARING - Rural

- Site clearing in rural area composed of three major processess:
- <u>Clearing</u> cutting/taking down, removal and disposal of everything above ground level
- <u>Grubbing</u> removal and disposal of surface vegetation, bases of stumps, roots, underground parts of structures, and other obstructions to a depths of at least 500 mm below ground level.
- 3. <u>Stripping of topsoil</u> removal of topsoil to an average of 100 mm below ground level, and its stockpiling for use and/or disposal.

SITE CLEARING - Rural

- Clearing, grubbing, stripping of top soil shall be carried out in all areas of roadway excavation and embankment.
- Combustible materials may be piled up within the road reserve and burned, where burning is allowed, if not all <u>unwanted material</u> shall be disposed of in a safe and tidy manner at solid waste dump outside the site.

SITE CLEARING - Developed

- <u>Developed area</u> usually takes longer time and involve higher cost.
- Relocation of service line and structure on and underground.
- <u>Details</u> such as water supply pipe, electrical cable telephone, gas etc. have to be established to avoid service disruption and relocation works
- Cross section surveying will be carried out, cut and fill marker will be pegged after upon completion of the site clearing.

developed

SITE CLEARING- Developed

- Another aspect to be considered is disruption to traffic flow have to be minimized by providing proper or better <u>detour</u> or <u>alternative route</u>.
- <u>Traffic signs</u> and guide signs shall be posted to ensure smooth flowing and <u>safety</u> of traffic during construction
- <u>Traffic control</u> may be required in certain cases

Traffic Control

OCWUTM-CRI2011

EARTHWORKS - Definition

• Definition:

- 1. <u>Formation</u> level/subgrade –top surface of subgrade
- 2. <u>Common excavation</u> any material not rock or hard
- 3. <u>Unsuitable materials</u> silt, peat, stumps, mud, combustible, toxic, etc, LL >80, PI >55
- 4. <u>Rock</u> or artificial hard materials need blasting or pneumatic tools, exclude can be loosened by track type tractor or ripper

ocw.utm.my

Formation/Subgrade

Normal excavation

EARTHWORKS 2

- Consist of excavation, backfill, transportation, stockpiling, spreading, compaction, forming embankment and slopes, etc as is necessary up to the formation levels as shown on the drawings.
- Tests conducted on soil, if found to be unsuitable (e.g. organic, marine clay) need to be treated, remove and <u>replaced</u> with suitable material
- Provide <u>temporary water course</u>, ditches, drains, pumps and silt trap to maintains earthworks free from water.

USM

OCWUTM-CRI2011

Vertical Drain

OCWUTM-CRI2011

EARTHWORKS 3 - Cut & Fill

- <u>Excavation</u> excavation of material from cutting area to fill area or dispose
- <u>Backfilling</u> soil need to be replaced or formation level higher
- Works carried out according to <u>mass-haul diagram</u> (earthwork management i.e., design, financing, choice of plants, project & future planning)
- Suitable & unsuitable material need to be separated
- Excavation of rock/hard materials use appropriate and safe methods
- All fill materials shall the suitable materials, deposited in layers of suitable thickness for proper compaction
- Thickness determine tru trial lay (min 8m x 15m)

EARTHWORKS 4 - Compaction

- Soil properties improved bearing capacity, permeability, compressibility
- Factors affecting compaction soil characteristics, moisture content, plants, layer thickness
- Conduct <u>lab compaction test</u> (BS 1377, 4.5 kg) to determine MDD and OMC
- <u>Field compaction</u> carried out as soon as the material is spread
- No. of passes, layer thickness, determine tru trial lay at OMC (max thickness 300mm), conduct FDT
- Control MC wet, <u>dry</u>, replace

EARTHWORKS 5 - Formation

- Subgrade to be compacted with suitable compactor at OMC.
- If necessary prior to compaction material shall be watered, dried, or replaced with new material to bring its moisture content to a uniform level, suitable for compaction
- For top 300mm, <u>compacted to</u> > 95 % for cohesive and 100% for cohesionless material of the MDD obtained in the lab.
- Cut area top 300 mm scarified and re-compacted to the required density.
- If in its natural state possesses a density exceeding requirement, surface trimmed and rolled to obtain smooth finish
- The top surface shall have the required shape, superelevation, level and grades (within +10mm and -30mm of required level)

ocw.utm.my

FDT - Sand Replacement

EARTHWORKS 6 - Compactor

- <u>Smooth wheel</u> compaction by dead weight, additional pressure (ballasted with water/sand), vibrate, for granular and premix
- <u>Pneumatic</u> 12 > 200 ton, for cohesive, sandy soil, premix, surface dressing
- <u>Vibratory</u> rearrange soil grains through vibration, suitable for coarse grained soil
- <u>Sheep foot</u> compact from bottom upwards, 3 > 27 ton, for clay, silt, fine grained soil

Smooth wheel

EARTHWORKS 7 - Turfing

- Protective Vegetation (Erosion Control)
- Topsoil spread and lightly compacted, thickness 50mm
- Block 250 x 250 mm, free of lallang and weeds
- <u>Slope</u> steeper than 1:3, pegged with bamboo stakes
- Seeding/hydroseeding submit 4 weeks in advance with proposed method and material
- All turf shall be regularly watered and fertilised
- Dead turf to be replaced with new turf

TURFING

PAVEMENT WORKS

- Consists of:
- Drainage layer
- Subbase
- Roadbase
- Coating
- Surfacing
- Shoulder

PAVEMENT WORKS 1 - Drainage Layer

- Laying and compaction of drainage layer
- Laid on a prepared and accepted subgrade (any damage or deterioration on subgrade shall be made good before laying drainage layer).
- Coarse aggregate (screened crushed hard rock), fine aggregate (screened quarry dust or sand)
- Laid and compacted at MC +1 to -2% of OMC without drying out or segregation to the required width and thickness

PAVEMENT WORKS 2 - Subbase

- Material natural or artificial mixture of locally available material such as sand, gravel, crushed aggregate, free from organic matter, clay lumps and other deleterious materials.
- Spec: CBR soaked ≥ 30% (if ≥ 10% retained on 20mm, can be assumed passed), PI ≤ 12, TFV ≥ 30kN, sand equivalent ≥ 45
- Laid in 100 200 mm compacted thickness, compacted at MC +1 to -2% of OMC without drying out or segregation to the required width and thickness
- Compaction in longitudinal direction, lower edge towards the crown, in superelevation towards the upper edge to produce density ≥ 95% MDD

PAVEMENT WORKS 3 - Roadbase

- Crushed Aggregate Roadbase
- Material crusher rock, crushed gravel or a mixture or crushed rock and gravel
- Spec: $PI \le 6$, $ACV \le 25$, $FI \le 30$, $Soundness \le 18$, $CBR \ge 80$, sand equivalent ≥ 45
- Spread using <u>motor grader</u> or approved spreader at OMC ± 1%, laid in 100 200 mm compacted thickness, maintain uniform gradation, prevent drying out or segregation to the required width and thickness
- Compaction in longitudinal direction, lower edge towards the crown, in superelevation towards the upper edge to produce density ≥ <u>95% MDD</u>

Roadbase

PAVEMENT WORKS 3 - Roadbase

- Wet Mix
- Material crusher rock, crushed gravel or a mixture or crushed rock and gravel
- Spec: ACV ≤ 25, FI ≤ 30, Soundness ≤ 18, sand equivalent ≥ 45
- Spread using paving machine at OMC ± 0.5%, laid in 100 -200 mm compacted thickness, maintain uniform gradation, prevent drying out or segregation to the required width and thickness
- Compaction in longitudinal direction, lower edge towards the crown, in superelevation towards the upper edge to produce density ≥ <u>95% MDD</u>

PAVEMENT WORKS 3 - Roadbase

• Bituminous Roadbase

- Material conform to the physical and mechanical quality requirement in asphaltic concrete section
- Design, equipment and construction methods as specified for asphaltic concrete section.

PAVEMENT WORKS 4 - Coating

- Two types of coating:
- Prime coat liquid bitumen, sprayed onto clean unbound roadbase using pressure distributor at the rate of 0.5 – 1 liter/m²
- MC-70 (50°C -70°C), SS-1K (25°C 45°C) cured for 24 hours to achieve maximum penetration
- 2. <u>Tack coat</u> bitumen emulsion, sprayed onto bituminous layer, rate 0.25 0.55 liter/m²

• RS-1K, 25°C - 45°C

- Carried out in dry, warm weather and dry surface, prevent spattering adjacent trees, furniture etc, not to be discharged into drains, gutter, keep traffic off
- Equipment power broom, compressed air blower, pressure distributor

Spraying

OCWUTM-CRI2011

TECHEIC

PAVEMENT WORKS 5 - Surfacing

• Asphaltic Concrete

- Binder course will be <u>laid</u> on the <u>broomed, clean</u> and <u>prime</u> <u>coated</u> roadbase.
- Laying and compacting job shall be carried out in dry weather
- After binder course has been properly compacted, sprayed with tack coat, <u>wearing course</u> will then be laid and compacted
- Bituminous mix for surfacing shall pass all tests specified for aggregate, bitumen, and bituminous mixture.
- Aggregate: LAAV \leq 25, soundness \leq 18%, FI \leq 25, WA \leq 2%, PSV \geq 40, coating \geq 95%, grading.

Brooming

OCWUTM-CRI2011

PAVEMENT WORKS 6 - Surfacing

- Mix design
- Bituminous mix has to be designed properly to obtain optimum quality.
- 1. <u>Job Mix Formulae</u> carried out in the lab under controlled conditions for each type of mix
- <u>Plant trial</u> after approval of JMF, to mix, lay and compact. Minimum of 20 tonnes of HMA
- Each mix produced subjected to be tested according to Marshall procedure and volumetric properties and meet the specification in JKR/SPJ/2005:

Mix design

- Design objectives Develop an economical blend of aggregates and asphalt that meet design requirements
- Historical mix design methods
 - 1. Marshall use impact hammer
 - 2. Hveem use kneading compactor
- New
 - Superpave gyratory use gyratory compactor to simulate field compaction, able to accommodate large size aggregate

Requirements in Common

- Sufficient asphalt to ensure a durable pavement
- Sufficient stability under traffic loads
- Sufficient air voids
 - Upper limit to prevent excessive environmental damage
 - Lower limit to allow room for initial densification due to traffic
- Sufficient workability

Lab Mix - Procedure

- 1. Select and test: aggregate & bitumen
- 2. Select gradation
- 3. Develop trial blends
- 4. Calculate blended specific gravity SG_{agg} blend
- 5. Establish mixing and compaction temperatures
- 6. Heat and mix bitumen and aggregates
- 7. Compact specimen (100 mm diameter)
- 8. Calculate bulk specific gravity of compacted samples
- 9. Stability and flow test (Marshall test)
- **10**. **Determination** of optimum bitumen content (AI & NAPA)

Lab Mix - Marshall Test

OCWUTM-CRI2011

Lab Mix - Marshall Form

2 BIT	×BIT.	WEIGHT-gm			BULK	SPEC. GRAV. VOLUME - X TOTAL			YOIDS-%				STABILITY-kq			FLOW	STIFFNESS	
SPEC.	SPEC.	Saturatod	IN	IN	YOL.	Protesta de la	MAX.		den se inte	· · · · · · · ·	Rit Valence	FILLED	TOTAL	24 2			10.5. Historia	100000000000
NO.	NO.	rurfaco dr;	AIR	WATER	cc.	BULK	THEOR.	BIT	AGG.	VOIDS	AGG.	(BIT)	MIX	3 3	MEAS.	CORR.	mm	
a		÷	a		f	4	k		i.	k	Ę	m	n	۰	P	4		
%Bit. by ut. of Aqq.	X Bit. by ut. of MIX.				c*0	d f		<u>bxa</u> SGbit	<u>(100-b)a</u> SGaq	100-i-j	100-j	100(i/l)	100-(100 ₄ /h)	CORR FACTOR		p×0		e r
	4.50	1200.8	1195.3	685.9	514.9	2.321			2 - D		1			1.00	1161	1161	3.27	1
		1196.4	1193.7	685.9	510.5	2.338	ii		\$					1.00	1100	1100	3.17	1
		1195.7	1192.7	685.4	510.3	2.337		•						1.00	1150	1150	3.33	
AYG	anna e	Second Second	an a		Sec. and	2.332	2.498	10.2	83.2	6.6	16.8	60.6	6.6	anne an the		1137	3.26	349.1
_	5.00	1197.9	1194.7	690.7	507.2	2.355	and the second	COMPANY -	Sources of	and the second se	ators retain		- Maria	1.04	1191	1239	3.70	
		1195.8	1192.7	690.2	505.6	2.359								1.04	1163	1210	3.71	
		1200.5	1197.1	692.4	508.1	2.356			Commenced		DODAY MAN		100000	1.04	1151	1197	3.83	
AYG		al and a second	Constant of	3000 Madeine	10000000	2.357	2.480	11.4	83.6	5.0	16.4	69.8	5.0			1215	3.75	324.3
	5.50	1202.8	1199.9	695.2	507.6	2.364		1999 - 1998 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -						1.04	1321	1374	4.30	
		1180.3	1176.4	682.7	497.6	2.364								1.04	1298	1350	4.29	
		1178.6	1174.8	681.2	497.4	2.362	Sec. and	Contra la	Same	Second State	and a	Summer	17 TUDAS	1.09	1239	1351	3.93	Summer of
AYG						2.363	2.461	12.6	83.4	4.0	16.6	76.0	4.0			1358	4.17	325.4
	6.00	1185.0	1182.3	685.8	499.2	2.368		•						1.04	1163	1210	4.63	
		1196.0	1191.5	690.6	505.4	2.358			14 - S					1.04	1135	1180	4.72	1
an ale		1188.8	1184.0	685.6	503.2	2.353	Summer and	10000	Second .	in certaile	-assas	housed	10.15	1.04	1111	1155	4.69	- and a second
AYG		in a start of the	portente y G			2.360	2.443	13.7	82.8	3.4	17.2	80.0	3.4			1182	4.68	252.5
	6.50	1172.7	1168.2	675.9	496.8	2.351								1.04	870	905	5.31	
		1185.6	1180.8	685.6	500.0	2,362	3 X		8 P	1 4				1.04	870	905	5.48	1 2
		1178.9	1172.4	679.6	499.3	2.348	-		8 9	6 - 8				1.04	919	956	5.69	
AYG				*****		2.354	2.426	14.9	82.2	3.0	17.8	83.3	3.0	0		922	5.49	167.8

PAVEMENT WORKS 7 - Specification

• Parameter for AC JKR/SPJ/2008

• ·		
Parameter	WC	BC
Stability (S)	> 8000 N	> 8000 N
Flow (F)	2.0 - 4.0 mm	2.0 – 4.0 mm
Stiffness (S/F)	> 2000N/mm	> 2000 N/mm
Air Voids in Mix (VTM)	3.0 – 5.0 %	3.0 – 7.0 %
Voids filled with Bitumen (VFB)	70 – 80 %	65 –75 %

WHAT IS PREMIX PRODUCTION?

Premix production is a process of mixing the aggregates and asphalt in the hot mix facilities, to be used as road material regardless whether it's an ACW, ACB or DBM.

OCWUTM-CRI2011

Agregate Stockpile

OCWUTM-CRI2011

Premix - Materials

HOT MIX ASPHALT FACILITIES

- purpose of an HMA facility is to properly proportion, blend, and heat aggregate and asphalt to produce an HMA that meets the requirements of the job mix formula.
- two basic types of HMA plants commonly in use today: the drum mix and batch facilities.
- drum plants produce HMA in a continuous operation while batch facilities produce HMA in individual batches

DIFFERENCE

- drum mix plants dry the aggregate and blend it with asphalt in a continuous process and in the same piece of equipment.
- batch plants dry and heats the aggregate and then in a separate mixer blend the aggregate and asphalt one batch at a time

DRUM MIX

OCWUTM-CRI2011

PAVEMENT WORKS 9 - Check List

- Observations and tests at site of JMF
- 1. Record type and weight of rollers, check tyre pressure
- 2. Record type of paver
- 3. Check that trial area is suitable (not on soft ground, uneven surface, or actual contract site)
- 4. Take sample of each mix and carry out test: binder and grading; bulk SG of sample: volumetric properties, stability and flow.
- Check premix temp on lorry (> 5 ton load), plant and sites (never exceed 163°C and not less 125°C prior to loading into paver hopper)
- 6. Record laying (<u>uncompacted</u>) thickness
- 7. Check texture of paved surface before rolling (no blemishes and irregularities)

PAVEMENT WORKS 9 - Check List

- 8. <u>Record temperature</u> immediately before rolling start
- 9. Record rolling pattern
- 10. Check texture of compacted surface
- 11. Cut core sample after laid premix hardened (at least 3 samples from each lorry load)
- 12. Record compacted thickness and density from core samples
- As a result of the plant trials, amendments, further test and analysis and additional plant trials, to JMF may be required
- Full scale production can only be produced after satisfaction and full report of plant trial was documented.

Premix temperature

PAVEMENT WORKS 10 - Rolling

- Premix compaction
- Consists of:
 - 1. <u>Breakdown</u>/initial smooth wheel, <5 km/hr
 - 2. <u>Intermediate</u>/principal pneumatic, < 8 km/hr, weight \ge 15 ton, tyre pressure \ge 0.7 N/m²
 - 3. <u>Final</u> smooth wheel, eliminate irregularities, tyre tracks
- Temperature at the commencement of rolling $\geq 110^{\circ}C$
- Operate longitudinal direction with driven wheels towards the paver, lower to higher edge
- Passes overlapped half width of the roller

OCWUTM-CRI2011

Wearing course

OCWUTM-CRI2011

PAVEMENT WORKS 10 - Rolling

• Premix compaction

- <u>Construction joint</u> cut back straight, brushed on with RS-1K 10-15 minutes before laying of next section, no joints along wheelpaths
- Rollers, heavy vehicles shall not be allowed to stand on newly laid mix before compaction completed and thoroughly cooled and set.
- <u>Core</u> diameter \geq 100mm, 1 sample every 500 m²
- <u>tests</u> (density, thickness, and quality), > 24 hrs
- Open to traffic > 4 hrs, < 30 km/hr, no sharp turning
- Compaction requirement 90, 95, 98% of Marshall density at OBC

M-CRI2011

Extraction

<u>UTM</u>

PAVEMENT WORKS 11 - Shoulder

- Consists of furnishing, compacting and shaping earth, gravel, or paved <u>shoulder</u>
- Paved constructed as normal bituminous layer
- Gravel using approved material for gravel surfacing
- Earth using suitable material as described in earthwork section
- Thickness of each layer according to the drawing, based on material used and compacted to the required minimum density
- Top level of shoulder should be level and flushed with pavement and uniformly free draining away from carriageway.

Shoulder

PAVEMENT WORKS 12 - Tolerance

Horizontal Alignment

- Determine from the CL of the pavement surface, edge and all parallel line correct within +50mm and -0mm
- Kerb, channel blocks and edge line +25mm and -0mm

• Surface levels

Pavement Layer	Tolerance				
Wearing	± 5 mm				
Binder	± 5 mm				
Roadbase	+ 0 mm, - 20 mm				
Subbase	+ 10 mm, - 20 mm				

PAVEMENT WORKS 12 - Tolerance

• Surface Regularities

- Riding quality depends on roughness
- Roughness due to uneven settlement, undulation, rutting, wide cracking, potholes etc.
- IRI used to measure roughness
- Lane IRI measured using <u>walking profiler</u> for the whole road length and each 100m section < 2.m/km

PAVEMENT WORKS 13 - Defects

• Surface defects

- Some of the factors contributing to surface defects are:
- Design wrong material spec, low/substandard spec, inadequate design thickness
- Mixing and transporting bad grading, low quality binder, inadequate binder, temperature, low aggregate quality
- Laying/Paving uneven or dirty surface, inadequate coating, low quality workmanship, inadequate compaction, thickness, plant and equipment not in good working condition.

CONSTRUCTION PLANTS

- <u>Plants</u> used in road construction depends on material type and quantity involved in each activity
- Same plants may be used in several different activities
- Other plant and equipments for specific job or activities

OCWUTM-CRIZUII

REFERENCES

- 1. Mohd Rosli Hainin, Che Ros Ismail and Haryati Yaacob HIGHWAY ENGINEERING NOTES, Published for Internal Circulation, 2011.
- 2. Roberts, F.L., Kandhal, P.S., Brown, E.R., Dah-Yin Lee, and Kennedy, T.W., HOT MIX ASPHALT MATERIALS, MIXTURE DESIGN, AND CONSTRUCTION, NAPA, 1991
- 3. Wignall, A., Kendrick, P.S. and Ancill, R., ROADWORK THEORY AND PRACTICE, Newnes, 1991
- 4. Wright, P.H. and Dixon, K.K., HIGHWAY ENGINEERING, John Wiley & Sons, 2004
- 5. Jabatan Kerja Raya, STANDARD SPECIFICATION FOR ROADWORKS, JKR/SPJ/2008-S4, 2008
- 6. Jabatan Kerja Raya, STANDARD SPECIFICATION FOR ROADWORKS, JKR/SPJ/1988, 1988