PERMISSIBLE STRESS IN STRUCTURAL DESIGN OF TIMBER

List of Design checks:

In timber structural design, list of checks for the permissible stresses are:

- 1) Flexural strength
- 2) Shear strength
- 3) Bearing strength
- 4) Lateral stability
- 5) Deflection

For each strength parameter, allowable value must be greater than the actual or applied value. The determination of the allowable value depends on the modification factors K_1 , K_2 , K_3 , K_4 , and K_5 . Use characteristic load, $W = 1.0 G_k + 1.0 Q_k$ for the calculation of the actual stresses.

Modification factors:

1. Duration of Loading, K_1

Refer to Table 5 MS 544. For long term, use $K_1 = 1.0$

2. Load sharing factor, K₂

If the number of member in one row is more than 4, and the spacing of the members is $< 600 \text{ mm}, K_2 = 1.1$ and use average *E*. Otherwise, use $K_2 = 1.0$ use *E* minimum.

3. Length and position of bearing, K_3

Refer to Clause 11.2 MS 544, Table 6 and Figure 1. Conservatively, assume as 1.0.

4. Notch at the end of member, K_4

Refer to Clause 11.4 and Figure 2.

5. Shape factor, K₅

Refer to Clause 11.5.

6. Depth factor, K₆

Refer to Clause 11.6.

Design Check Calculation:

1) Deflection

Actual deflection, $\Delta s = \frac{5WL^3}{384 EI}$ for uniformly distributed load

Permissible deflection $\Delta p = 0.003L$

2) Flexural strength

$$f_s = M/Z$$

$$f_p = f_g \ge k_1 \ge k_2 \ge k_5 \ge k_6$$

3) Shear strength

 $q_s = 1.5 \text{ x}$ Average shear stress

$$q_p = q_g \mathbf{x} \, k_1 \, \mathbf{x} \, k_2 \, \mathbf{x} \, k_4$$

where; q_g = grade shear stress normal to grain

4) Bearing stress

 C_{ts} = Bearing force (or support reaction) / Bearing area

$$C_{tp} = C_{tg} \times k_1 \times k_2 \times k_3$$

 C_{tg} = grade bearing stress normal to grain

5) Lateral stability

$$\left(\frac{D}{B}\right)_{s} < \left(\frac{D}{B}\right)_{p}$$

where ; D = depthB = width

Refer to Table 7 for the allowable limit of D/B ratio.