

ocw.utm.my

BS EN 1993-1-8:2005

Eurocode 3: Design of Steel Strutures

Part 1-8: Design of Joints

- 1. Introduction
- 2. Basis of Design
- 3. Bolted Connections
- 4. Welded Connections
- 5. Analysis, Classification and Modelling
- 6. Structural Joints connecting H or I sections
- 7. Hollow section joints

ocw.utm.my

- Connections, treated as structural elements
- Rules provided to determine the design parameters e.g. stiffness, strength and rotation capacity
- Connections modeled by using <u>component-based</u> <u>approach</u>

ocw.utm.my

BOLTED CONNECTIONS

- Bolt classes 4.6, 4.8, 5.6, 5.8, 6.8, 8.8 and 10.9
- Bolted connection loaded in shear should be designed as:
 - Category A: Bearing type
 - Category B: Slip-resistant at serviceability limit state
 - Category C: Slip-resistant at ultimate limit state
- Bolted connection loaded in tension:
 - Category D: non-preloaded
 - Category E: preloaded

Failure mode	Bolts	Rivets	DESIGN
Shear resistance per shear plane	$F_{v,Rd} = \frac{\alpha_v \ f_{ub} \ A}{\gamma_{M2}}$ - where the shear plane passes through the threaded portion of the bolt $(A$ is the tensile stress area of the bolt A_o): - for classes $4.6, 5.6$ and 8.8 : $\alpha_v = 0.6$ - for classes $4.8, 5.8, 6.8$ and 10.9 : $\alpha_v = 0.5$ - where the shear plane passes through the unthreaded portion of the bolt $(A$ is the gross cross section of the bolt): $\alpha_v = 0.6$	$F_{v,Rd} = \frac{0.6 \ f_{sr} \ A_0}{\gamma_{M2}}$	RESISTANCE
Bearing resistance (1, 2), 3)	$F_{b,Rd} = \frac{k_1}{\gamma_{M2}} \frac{d}{dt}$ where α_b is the smallest of α_d ; $\frac{f_{ab}}{f_a}$ or 1,0; in the direction of load transfer: - for end bolts: $\alpha_d = \frac{e_1}{3d_0}$; for inner bolt perpendicular to the direction of load transfer: - for edge bolts: k_1 is the smallest of $2.8\frac{e_1}{dt}$ - for inner bolts: k_1 is the smallest of $1.4\frac{d}{dt}$		
Tension resistance 2)	$F_{\text{URd}} = \frac{k_2 \ f_{\text{wb}} \ A_s}{\gamma_{M2}}$ where $k_2 = 0,63$ for countersunk bolt, otherwise $k_1 = 0.9$.	$F_{i,Rd} = \frac{0.6 f_{wr} A_0}{\gamma_{M2}}$	
Modify sistance	$B_{p,Rd} = 0.6 \pi d_m t_p f_u / \gamma_{M2}$	No check needed	
tension	$\frac{F_{v,Ed}}{F_{v,Rd}} + \frac{F_{t,Ed}}{1,4F_{t,Rd}} \le 1,0$		ocw.utm.m

Table 3.7: Slip factor, μ , for pre-loaded bolts				
Class of friction surfaces (see 1.2.7 Reference Standard: Group 7)	Slip factor μ			
A	0,5			
В	0,4			
С	0,3			
D	0,2			
NOTE 1: The requirements for testing and inspect Group 7.	treatment should be based on test specimens			

OPENCOURSEWARE

WELDED CONNECTIONS

- When using metal arc welding, the mechanical properties of weld metal should be compatible with the parent metal
- The material thickness should be at least 4 mm
- Welds are classified as fillet welds, butt welds, plug welds and flare groove welds
- For a fillet welds, the throat thickness, a is defined as below:

© 000 BY NC SA

Inspiring Creative and Innovative Mind

ocw.utm.my

UTM UNIVERSITI TECNOLOGI MALAYSIA

OPENCOURSEWARE

Design Resistance of Fillet Weld

Directional method

- The internal force is resolved into normal stresses and shear stresses on the critical plane of the weld throat.
- The design resistance is sufficient if both conditions below are satisfied:

 $\sigma_{\perp} \le 0.9 \frac{f_u}{\gamma_{M2}}$

Modify

© 0 8 0 BY NC 5A

Inspiring Creative and Innovative Minds

Design Resistance of Fillet Weld

Simplified method

- Independent of the orientation of the weld throat plane to the applied force, the design resistance per unit length,

$$F_{w,Rd} = f_{vw.d} a$$

– The design shear strength $f_{vw.d}$ of the weld: $f_{vw.d} = \frac{f_u/\sqrt{3}}{\beta_w \gamma_{M2}}$

$$f_{vw.d} = \frac{f_u / \sqrt{3}}{\beta_w \gamma_{M2}}$$

Design of fillet weld independent of the direction of loading

Modify

OPENCOURSEWARE

Table 3.1 Correlation factor βw for weld resistance

Standard and steel grade			Correlation factor βw
EN 10025	EN 10210	EN 10219	00000000
S 235 S235 W	S 235 H	S 235 H	0,8
S 275 S 275 N/NL S 275 M/ML	S 275 H S 275 NH/NLH	S 275 H S 275 NH/NLH S 275 MH/MLH	0,85
S 355 S 355 N/NL S 355 M/ML S 355 W	S 355 H S 355 NH/NLH	S 355 H S 355 NH/NLH S 355 MH/MLH	0,9
S 420 N/NL S 420 M/ML	55666666	S 420 MH/MLH	1,0
S 460 N/NL S 460 M/ML S 460 Q/QL/QL1	S 460 NH/NLH	S 460 NH/NLH S 460 MH/MLH	1,0

Modify

