SSCE1693 ENGINEERING MATHEMATICS

CHAPTER 6: VECTORS

WAN RUKAIDA BT WAN ABDULLAH YUDARIAH BT MOHAMMAD YUSOF
 SHAZIRAWATI BT MOHD PUZI
 NUR ARINA BAZILAH BT AZIZ
 ZUHAILA BT ISMAIL

Department of Mathematical Sciences
Faculty of Sciences
Universiti Teknologi Malaysia

6.1 Basic concepts

6.2 Dot product
6.2.1 Angle between two vectors
6.3 Cross product
6.3.1 Area of parallelogram/triangle

6.4 Lines in space

6.4.1 Equation of a line
6.4.2 Angle between two lines
6.4.3 Intersection of two lines
6.4.4 Distance from a point to a line

6.5 Planes in Space

6.5.1 Equation of a plane
6.5.2 Intersection of two planes
6.5.3 Angle between two planes
6.5.4 Angle between a line and a plane
6.5.5 Shortest distance

6.1 Basic concepts

Vector: quantity that has both magnitude and direction. (E.g: Force, velocity)

A vector can be represented by a directed line segment where the
i) length of the line represents the magnitude
ii) direction of the line represents the direction

Notation:

Vector components:

$$
\bar{v}=a \underline{i}+b \underline{j}
$$

a and b : scalar component
i and j : direction

In 3D:

$$
\bar{v}=a \underline{i}+b \underline{j}+c \underline{k} \quad \text { or } \quad \bar{v}=\langle a, b, c>
$$

Note that $\bar{v}=<a, b, c>\neq \bar{v}=(a, b, c)$

The vector $P \vec{Q}$ with initial point $P\left(x_{1}, y_{1}, z_{1}\right)$ and terminal point $Q\left(x_{2}, y_{2}, z_{2}\right)$ has the standard representation

$$
P \bar{Q}=\left(x_{2}-x_{1}\right) \mathrm{i}+\left(y_{2}-y_{1}\right) \mathrm{j}+\left(z_{2}-z_{1}\right) \mathrm{k}
$$

Or

$$
\overline{P Q}=<x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}>
$$

Important Formulae

Let $\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle$ and $\mathbf{w}=\left\langle w_{1}, w_{2}, w_{3}\right\rangle$ be vectors in 3D space and k is a constant.

1. Magnitude

$$
|\mathbf{v}|=\sqrt{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}}
$$

2. Unit vector in the direction of \mathbf{v} is

$$
\hat{\mathbf{v}}=\frac{\mathbf{v}}{|\mathbf{v}|}=\frac{\left\langle v_{1}, v_{2}, v_{3}\right\rangle}{|\mathbf{v}|}
$$

3. $\mathbf{v} \pm \mathbf{w}=\left\langle v_{1} \pm w_{1}, v_{2} \pm w_{2}, v_{3} \pm w_{3}\right\rangle$

Example 6.1:

Given that $\mathbf{a}=\langle 3,1,-2\rangle, \mathbf{b}=\langle-1,6,4\rangle$. Find
(a) $\mathbf{a}+3 \mathbf{b}$
(b) $|\mathbf{b}|$
(c) a unit vector in the direction of \mathbf{b}.

Example 6.2:
Given the vectors $\mathbf{u}=3 \underline{i}+\underline{j}-5 \underline{k}$ and $\mathbf{v}=4 \underline{i}-2 \underline{j}+7 \underline{k}$.
Find a unit vector in the direction of $2 \mathbf{u}+\mathbf{v}$.

Example 6.3:
Given two points, $\mathrm{P}(1,0,1)$ and $\mathrm{Q}(3,2,0)$. Find a unit vector \mathbf{u} in the direction of $\overline{P Q}$.

6.2 The Dot Product (The Scalar Product)

The scalar product between two vectors

$$
\mathbf{v}=\left\langle v_{1}, v_{2}, v_{3}\right\rangle \text { and } \mathbf{w}=\left\langle w_{1}, w_{2}, w_{3}\right\rangle \text { is }
$$ defined as follows:

in components
\square
geometrically

Example 6.4:

Given the vectors $\mathbf{u}=3 \underline{i}+\underline{j}-5 \underline{k}$ and $\mathbf{v}=4 \underline{i}-2 \underline{j}+7 \underline{k}$.
a) Find the angle between \mathbf{u} and \mathbf{v}.

Example 6.5:

The coordinates of A, B and C are $A(1,1,-1), B(-1,2,3)$ and $C(-2,1,1)$. Find the angle $A B C$, giving your answer to nearest degree.

Example 6.6:

Given the vectors $\mathbf{a}=\mathbf{2 i}+\mathbf{2 j}-\mathbf{3 k}$ and $\mathbf{b}=\boldsymbol{i}+\mathbf{3} \boldsymbol{j}+\boldsymbol{k}$. Find the angle between \mathbf{a} and \mathbf{b}.

Example 6.7:

Given $\mathbf{u}=m \mathbf{i}+\mathbf{j}$ and $\mathbf{v}=3 \mathbf{i}+2 \mathbf{j}$. Find the values of m if the angle between u and v is $\frac{\pi}{4}$.

6.2.1 Angle Between Two Vectors

\square

Example 6.8:
Given $\mathbf{a}=\mathbf{i}+\mathbf{j}+\mathbf{k}$ and $\mathbf{b}=\mathbf{i}+\alpha \mathbf{j}-5 \mathbf{k}$. Find the value of α if the vectors \mathbf{a} and \mathbf{b} are orthogonal.

6.3 The Cross Products (Vector Products)

The cross product (vector product) $\mathbf{u} \times \mathbf{v}$ is a vector perpendicular to \mathbf{u} and \mathbf{v} whose direction is determined by the right hand rule and whose length is determined by the lengths of \mathbf{u} and \mathbf{v} and the angle between them.

Theorem 6.2 :(cross product)
If $\mathbf{u}=u_{1} \mathbf{i}+u_{2} \mathbf{j}+u_{3} \mathbf{k}$ and $\mathbf{v}=v_{1} \mathbf{i}+v_{2} \mathbf{j}+v_{3} \mathbf{k}$, then

$$
\begin{aligned}
\mathbf{u} \times \mathbf{v} & =\left|\begin{array}{ccc}
\mathrm{i} & \mathrm{j} & \mathrm{k} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right| \\
& =\left(u_{2} v_{3}-u_{3} v_{2}\right) \mathrm{i}-\left(u_{1} v_{3}-u_{3} v_{1}\right) \mathrm{j}+\left(u_{1} v_{2}-u_{2} v_{1}\right) \mathrm{k}
\end{aligned} .
$$

Definition 6.1: (Magnitude of Cross Product)

If \mathbf{u} and \mathbf{v} are nonzero vectors, and $\boldsymbol{\theta}(0<\boldsymbol{\theta}<\boldsymbol{\pi})$ is the angle between \mathbf{u} and \mathbf{v}, then

$$
|\mathbf{u} \times \mathbf{v}|=|\mathbf{u}||\mathbf{v}| \sin \theta
$$

Theorem 6.3 (Properties of Cross Product)

The cross product obeys the laws
(a) $\mathbf{u} \times \mathbf{u}=\mathbf{0}$
(b) $\mathbf{u} \times \mathbf{v}=-(\mathbf{v} \times \mathbf{u})$
(c) $\mathbf{u} \times(\mathbf{v}+\mathbf{w})=\mathbf{u} \times \mathbf{v}+\mathbf{u} \times \mathbf{w}$
(d) $(k \mathbf{u}) \times \mathbf{v}=\mathbf{u} \times(k \mathbf{v})=k(\mathbf{u} \times \mathbf{v})$
(e) $\mathbf{u} / / \mathbf{v}$ if and only if $\mathbf{u} \times \mathbf{v}=\mathbf{0}$
(f) $\mathbf{u} \times \mathbf{0}=\mathbf{0} \times \mathbf{u}=\mathbf{0}$

Example 6.9:
Given that $\mathbf{u}=\langle 3,0,4\rangle$ and $\mathbf{v}=\langle 1,5,-2\rangle$, find
(a) $\mathbf{u} \times \mathbf{V}$
(b) $\mathbf{v} \times \mathbf{u}$

Example 6.10:
Given $\mathbf{a}=\mathbf{i}+\mathbf{j}+\mathbf{k}$ and $\mathbf{b}=\mathbf{i}+3 \mathbf{j}-5 \mathbf{k}$. Find a unit vector which is orthogonal to the vectors \mathbf{a} and \mathbf{b}.

Example 6.11:

Find a unit vector perpendicular to both vectors

$$
\mathbf{a}=-\mathbf{i}+2 \mathbf{j}+\mathbf{k} \text { and } \mathbf{b}=2 \mathbf{i}+\mathbf{j}+\mathbf{k}
$$

6.3.1 Area of parallelogram \& triangle

Area of a parallelogram $=\mathbf{u}|\mathbf{v}| \sin \theta=|\mathbf{u} \times \mathbf{v}|$
Area of triangle $=\frac{1}{2} \mathbf{u} \times \mathbf{v}$

Example 6.12:

Find an area of a parallelogram bounded by two vectors

$$
\mathbf{a}=2 \mathbf{i}+2 \mathbf{j}-3 \mathbf{k} \text { and } \mathbf{b}=\mathbf{i}+3 \mathbf{j}+\mathbf{k}
$$

Example 6.13:

Find an area of a triangle that is formed from vectors

$$
\mathbf{u}=\mathbf{i}+\mathbf{j}-3 \mathbf{k} \text { and } \mathbf{v}=-6 \mathbf{j}+5 \mathbf{k} .
$$

Example 6.14:

Find the area of the triangle having vertices at $\mathrm{P}(1,3,2), \mathrm{Q}(-2,1,3)$ and $\mathrm{R}(3,-2,-1)$.

Ans: 11.52sq units.

6.4 Lines in Space

6.4.1 Equation of a Line

How lines can be defined using vectors?

Suppose L is a straight line that passes through $P\left(x_{0}, y_{0}, z_{0}\right)$ and is parallel to the vector $\mathbf{v}=\langle a, b, c\rangle$. Thus, a point $Q(x, y, z)$ also lies on the line L if vectors $\overline{P Q}$ and \mathbf{v} are parallel, that is:

$$
\overline{P Q}=t \mathbf{v}
$$

Say $\mathbf{r}_{0}=\overline{O P}$ and $\mathbf{r}=\overline{O Q}$

$$
\begin{gathered}
\therefore \overline{P Q}=\mathbf{r}-\mathbf{r}_{0} \\
\mathbf{r}-\mathbf{r}_{0}=t \mathbf{v} \text { or } \mathbf{r}=\mathbf{r}_{0}+t \mathbf{v}
\end{gathered}
$$

In component form,

$$
<x, y, z>=<x_{0}, y_{0}, z_{0}>+t<a, b, c>
$$

(equation of line in vector component)

Theorem 6.4 (Parametric Equations for a Line)

The line through the point $P\left(x_{0}, y_{0}, z_{0}\right)$ and parallel to the nonzero vector $\mathbf{v}=\langle a, b, c\rangle$ has the parametric equations

$$
x=x_{0}+a t, \quad y=y_{0}+b t, \quad z=z_{0}+c t
$$

Example 6.15:

Give the parametric equations for the line through the point $(6,4,3)$ and parallel to the vector $\langle 2,0,-7\rangle$.

Example 6.16:

The position vectors of points A and B are

$$
\overline{\boldsymbol{O A}}=2 \mathbf{i}+3 \mathbf{j}+\mathbf{k} \text { and } \overline{\boldsymbol{O B}}=\mathbf{i}+\mathbf{j}-\mathbf{k} .
$$

Find the parametric equation of the line $A B$.

Theorem 6.5 (Symmetric Equations for a line)

The line through the point $P\left(x_{0}, y_{0}, z_{0}\right)$ and parallel to the nonzero vector $\mathbf{v}=\langle a, b, c\rangle$ has the symmetrical equations

$$
\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}
$$

Example 6.17:

Given that the symmetrical equations of a line in space is $\frac{2 x+1}{3}=\frac{3-y}{4}=\frac{z+4}{2}$, find
(a) a point on the line.
(b) $\quad \mathrm{a}$ vector that is parallel to the line.

Example 6.18:

The line l is passing through the points $X(2,0,5)$ and $Y(-3,7,4)$. Write the equation of l in symmetrical form.

Example 6.19:

Given a line $\mathrm{L}: \mathbf{r}=<\mathbf{1}, \mathbf{- 1}, \mathbf{2}>+\boldsymbol{t}\langle\mathbf{2}, \mathbf{1}, \mathbf{3}>$.
Write the equation of L in symmetrical form.

6.4.2 Angle Between Two Lines

Consider two straight lines

$$
l_{1}: \frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}
$$

and

$$
l_{2}: \frac{x-x_{2}}{d}=\frac{y-y_{2}}{e}=\frac{z-z_{2}}{f} .
$$

The line l_{1} parallel to the vector $\mathbf{u}=a \mathbf{i}+b \mathbf{j}+c \mathbf{k}$ and the line l_{2} parallel to the vector. $\mathbf{v}=d \mathbf{i}+e \mathbf{j}+f \mathbf{k}$ Since the lines l_{1} and l_{2} are parallel to the vectors \mathbf{u} and \mathbf{v} respectively, then the angle, $\boldsymbol{\theta}$ between the two lines is given by

$$
\cos \theta=\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}||\mathbf{v}|}
$$

Example 6.20:

Find an acute angle between line

$$
l_{1}=\mathbf{i}+2 \mathbf{j}+\mathrm{t}(2 \mathbf{i}-\mathbf{j}+2 \mathbf{k})
$$

and line

$$
l_{2}=2 \mathbf{i}-\mathbf{j}+\mathbf{k}+\mathrm{s}(3 \mathbf{i}-6 \mathbf{j}+2 \mathbf{k}) .
$$

Example 6.21:

Find the angle between lines l_{1} and l_{2} which are defined by

$$
\begin{aligned}
& l_{1}: x-3=\frac{y+8}{3}=\frac{2-z}{6} \\
& l_{2}: x=6-t, \quad y=-1-2 t, \quad 6 z=-12 t
\end{aligned}
$$

6.4.3 Intersection of Two Lines

In three-dimensional coordinates (space), two lines can be in one of the three cases as shown below

a) intersect
b) parallel
c)skewed

Let l_{1} and l_{2} are given by:

$$
\begin{align*}
& l_{1}: \frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c} \text { and } \tag{1}\\
& l_{2}: \frac{x-x_{2}}{d}=\frac{y-y_{2}}{e}=\frac{z-z_{2}}{f} \tag{2}
\end{align*}
$$

From (1), we have $\mathbf{v}_{1}=\langle a, b, c\rangle$
From (2), we have $\mathbf{v}_{2}=\langle d, e, f\rangle$

Two lines are parallel if we can write

$$
\mathbf{v}_{1}=\lambda \mathbf{v}_{2}
$$

The parametric equations of l_{1} and l_{2} are:

$$
\begin{align*}
l_{1}: & x=x_{1}+a t \\
y & =y_{1}+b t \tag{3}\\
z & =z_{1}+c t \\
& \\
& \\
& z=y_{2}+e s \\
& =z_{2}+f s
\end{align*}
$$

Two lines are intersect if there exist unique values of t and s such that:

$$
\begin{aligned}
& x_{1}+a t=x_{2}+d s \\
& y_{1}+b t=y_{2}+e s \\
& z_{1}+c t=z_{2}+f s
\end{aligned}
$$

Substitute the value of t and s in (3) to get x, y and z. The point of intersection $=(x, y, z)$

Two lines are skewed if they are neither parallel nor intersect.

Example 6.22:

Determine whether l_{1} and l_{2} are parallel, intersect or skewed.
a) $l_{1}: x=3+3 t, y=1-4 t, z=-4-7 t$
$l_{2}: x=2+3 s, y=5-4 s, z=3-7 s$
b) $l_{1}: \frac{x-1}{1}=\frac{2-y}{4}=z$
$l_{2}: \frac{x-4}{-1}=y-3=\frac{z+2}{3}$

Solutions:

a) for l_{1} :
point on the line, $\mathrm{P}=(3,1,-4)$
vector that parallel to line, $\mathbf{v}_{1}=\langle 3,-4,-7\rangle$
for l_{2} :
point on the line, $\mathrm{Q}=(2,5,3)$
vector that parallel to line, $\mathbf{v}_{2}=\langle 3,-4,-7\rangle$

$$
\begin{aligned}
& \mathbf{v}_{1}=\lambda \mathbf{v}_{2} \quad ? \\
& \mathbf{v}_{1}=\mathbf{v}_{2} \quad \text { where } \lambda=1
\end{aligned}
$$

Therefore, lines l_{1} and l_{2} are parallel.
b) Symmetrical eq's of l_{1} and l_{2} can be rewrite as:

$$
\begin{aligned}
& l_{1}: \frac{x-1}{1}=\frac{y-2}{-4}=\frac{z-0}{1} \\
& l_{2}: \frac{x-4}{-1}=\frac{y-3}{1}=\frac{z-(-2)}{3}
\end{aligned}
$$

Therefore:
for $l_{1}: \mathrm{P}=(1,2,0) \quad, \quad \mathbf{v}_{1}=\langle 1,-4,1\rangle$
for $l_{2}: \quad \mathrm{Q}=(4,3,-2) \quad, \quad \mathbf{v}_{2}=\langle-1,1,3\rangle$

$$
\begin{aligned}
& \mathbf{v}_{1}=\lambda \mathbf{v}_{2} \quad ? \\
& \mathbf{v}_{1} \neq \lambda \mathbf{v}_{2} \rightarrow \quad \text { not parallel. }
\end{aligned}
$$

In parametric eq's:
$l_{1}: x=1+t, y=2-4 t, z=t$
$l_{2}: x=4-s, y=3+s, z=-2+3 s$
$1+t=4-s$
$2-4 t=3+s$
$t=-2+3 s$
Solve the simultaneous equations (1), (2), and (3) to get t and s.

$$
s=\frac{5}{4} \quad \text { and } t=\frac{7}{4}
$$

The value of t and s must satisfy (1), (2), and (3).
Clearly they are not satisfying (2) i.e

$$
\begin{gathered}
2-\frac{7}{4}=3+\frac{5}{4} ? \\
\frac{1}{4} \neq \frac{17}{4}
\end{gathered}
$$

Therefore, lines l_{1} and l_{2} are not intersect.
This implies the lines are skewed!
6.4.4 Distance From A Point To A Line

Distance from a point Q to a line that passes through point P parallel to vector \mathbf{v} is equal to the length of the component of $\mathbf{P Q}$ perpendicular to the line.

$$
\begin{aligned}
d & =|\overline{P Q}| \sin \theta \\
& =\frac{\overline{P Q} \times \mathbf{v}}{\mathbf{v}}
\end{aligned}
$$

Example 6.23:

Given a line L : $\boldsymbol{r}=<\mathbf{1}, \mathbf{- 1}, \mathbf{2}>+\boldsymbol{t}\langle\mathbf{2}, \mathbf{1}, \mathbf{3}>$. Find the shortest distance from a point $\mathrm{Q}(4,1,-2)$ to the line L.

Example 6.24:

Find the shortest distance from the point $M(1,-2,2)$ to the line $\boldsymbol{l}: ~ x=\frac{2 y}{1}=\frac{-z}{1}$.

6.5 Planes in Space

6.5.1 Equation of a Plane

Suppose that α is a plane. Point $P\left(x_{0}, y_{0}, z_{0}\right)$ and $Q(x, y, z)$ lie on it. If $\bar{N}=a \mathbf{i}+b \mathbf{j}+c \mathbf{k}$ is a non-null vector perpendicular (ortoghonal) to α, then N is perpendicular to $P Q$.

Thus,

$$
\overline{P Q} \cdot \bar{N}=0
$$

$$
\begin{gathered}
<x-x_{0}, y-y_{0}, z-z_{0}>\cdot<a, b, c>=0 \\
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0
\end{gathered}
$$

Conclusion:

The equation of a plane can be determined if a point on the plane and a vector orthogonal to the plane are known.

Theorem 6.6 (Equation of a Plane)

The plane through the point $P\left(x_{0}, y_{0}, z_{0}\right)$ and with the nonzero normal vector $\mathbf{N}=\langle a, b, c\rangle$ has the equation

Point-normal form:

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0
$$

Standard form:

$$
a x+b y+c z=d \quad \text { with } \quad d=a x_{0}+b y_{0}+c z_{0}
$$

Example 6.25:

Give an equation for the plane through the point
$(2,3,4)$ and perpendicular to the vector $\langle-6,5,-4\rangle$.

Example 6.26:

Find the equation of a plane through $(2,3,-5)$ and perpendicular to the line $l: \frac{x+1}{3}=\frac{2-y}{4}=z$.

Example 6.27:

Given the plane that contains points $A(2,1,7)$,
$B(4,-2,-1)$, and $C(3,5,-2)$. Find:
a) The normal vector to the plane
b) The equation of the plane in standard form

Example 6.28:

Find the parametric equations for the line through the point (5, $-3,2$) and perpendicular to the plane $6 x+2 y-7 z=5$.

6.5.2 Intersection Of Two Planes

Intersection of two planes is a line, l

To obtain the equation of the intersecting line, we need

1) a point on the line L
2) a vector $\overline{\boldsymbol{N}}$ that is parallel to the line L which is

$$
\text { given by } \overline{\boldsymbol{N}}=N_{1} \times N_{2}
$$

If $\overline{\mathbf{N}}=\langle a, b, c\rangle$, then the equation of the line L is

$$
\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}
$$

(symmetric)
or

$$
x=x_{0}+a t, \quad y=y_{0}+b t, \quad z=z_{0}+c t
$$

Example 6.29:

Find the equation of the line passing through $P(2,3,1)$ and parallel to the line of intersection of the planes $x+$ $2 y-3 z=4$ and $x-2 y+z=0$.

6.5.3 Angle Between Two Planes

Properties of two planes
(a) An angle between the crossing planes is an angle between their normal vectors.

$$
\cos \theta=\frac{\mathbf{N}_{\mathbf{1}} \cdot \mathbf{N}_{2}}{\left|\mathbf{N}_{\mathbf{1}}\right|\left|\mathbf{N}_{2}\right|}
$$

(b) Two planes are parallel if and only if their normal vectors are parallel, $\mathbf{N}_{1}=\boldsymbol{\lambda} \mathbf{N}_{2}$
(c) Two planes are orthogonal if and only if

$$
\mathbf{N}_{1} \cdot \mathbf{N}_{2}=0 .
$$

Example 6.30:

Find the angle between plane $3 x+4 y=0$ and plane $2 x+y-2 z=5$.

6.5.4 Angle Between A Line And A Plane

Let $\boldsymbol{\alpha}$ be the angle between the normal vector \mathbf{N} to a plane π and the line L. Then we have

$$
\cos \propto=\frac{\mathbf{v} \cdot \mathrm{N}}{|\mathbf{v}||N|}
$$

where \mathbf{v} is vector parallel to L.
If θ is the angle between the line L and the plane π, then

$$
\alpha+\theta=\frac{\pi}{2} \quad \Rightarrow \quad \theta=\frac{\pi}{2}-\alpha
$$

and

$$
\sin \theta=\sin \left(\frac{\pi}{2}-\alpha\right)=\cos \alpha
$$

Therefore, the angle between a line and a plane is

$$
\sin \theta=\frac{\mathbf{v} \cdot \mathbf{N}}{|\mathbf{v}||\mathbf{N}|}
$$

Example 6.31:

Calculate the angle between the plane $x-2 y+z=4$ and the line $\frac{x-1}{4}=\frac{y+2}{2}=\frac{z-3}{1}$.

6.5.5 Shortest Distance Involving Planes

(a) From a Point to a Plane

Theorem 6.7: Shortest distance from a point to a plane.

The distance D between a point $P\left(x_{1}, y_{1}, z_{1}\right)$ and the plane $a x+b y+c z=d$ is

$$
D=\left|\frac{\mathrm{N} \cdot \overline{Q P}}{|\mathrm{~N}|}\right|=\left|\frac{a x_{1}+b y_{1}+c z_{1}-d}{\sqrt{a^{2}+b^{2}+c^{2}}}\right|
$$

Where $Q\left(x_{0}, y_{0}, z_{0}\right)$ is any point on the plane.

Example 6.32:

Find the distance D between the point $(4,5,-8)$ and the plane $2 x-6 y+3 z+4=0$.

Example 6.33:

i. Show that the line

$$
\frac{x-1}{3}=\frac{y}{-2}=\frac{z+1}{1}
$$

is parallel to the plane $3 x-2 y+z=1$.
ii. Find the distance from the line to the plane in part (a).

(b) Between two parallel planes

The distance between two parallel planes $a x+b y+c z=d_{1}$ and $a x+b y+c z=d_{2}$ is given by

$$
D=\frac{\left|d_{1}-d_{2}\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}
$$

Example 6.34:

Find the distance between two parallel planes $x+2 y-2 z=3$ and $2 x+4 y-4 z=7$.

